Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 205(10): 338, 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37742282

RESUMO

A polyphasic taxonomic approach, incorporating analysis of phenotypic features, cellular fatty acid profiles, 16S rRNA gene sequences, and determination of average nucleotide identity (ANI) plus digital DNA-DNA hybridization (dDDH), was applied to characterize an anaerobic bacterial strain designated KD22T isolated from human feces. 16S rRNA gene-based phylogenetic analysis showed that strain KD22T was found to be most closely related to species of the genus Gabonibacter. At the 16S rRNA gene level, the closest species from the strain KD22T corresponded with Gabonibacter massiliensis GM7T, with a similarity of 97.58%. Cells of strain KD22T were Gram-negative coccobacillus, positive for indole and negative for catalase, nitrate reduction, oxidase, and urease activities. The fatty acid analysis demonstrated the presence of a high concentration of iso-C15: 0 (51.65%). Next, the complete whole-genome sequence of strain KD22T was 3,368,578 bp long with 42 mol% of DNA G + C contents. The DDH and ANI values between KD22T and type strains of phylogenetically related species were 67.40% and 95.43%, respectively. These phylogenetic, phenotypic, and genomic results supported the affiliation of strain KD22T as a novel bacterial species within the genus Gabonibacter. The proposed name is Gabonibacter chumensis and the type strain is KD22T (= CSUR Q8104T = DSM 115208 T).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Filogenia , RNA Ribossômico 16S/genética , Imunoterapia , Ácidos Graxos , Fezes
2.
Nat Commun ; 14(1): 662, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750571

RESUMO

The composition and metabolism of the human gut microbiota are strongly influenced by dietary complex glycans, which cause downstream effects on the physiology and health of hosts. Despite recent advances in our understanding of glycan metabolism by human gut bacteria, we still need methods to link glycans to their consuming bacteria. Here, we use a functional assay to identify and isolate gut bacteria from healthy human volunteers that take up different glycans. The method combines metabolic labeling using fluorescent oligosaccharides with fluorescence-activated cell sorting (FACS), followed by amplicon sequencing or culturomics. Our results demonstrate metabolic labeling in various taxa, such as Prevotella copri, Collinsella aerofaciens and Blautia wexlerae. In vitro validation confirms the ability of most, but not all, labeled species to consume the glycan of interest for growth. In parallel, we show that glycan consumers spanning three major phyla can be isolated from cultures of sorted labeled cells. By linking bacteria to the glycans they consume, this approach increases our basic understanding of glycan metabolism by gut bacteria. Going forward, it could be used to provide insight into the mechanism of prebiotic approaches, where glycans are used to manipulate the gut microbiota composition.


Assuntos
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Citometria de Fluxo , Polissacarídeos/metabolismo , Prebióticos , Oligossacarídeos , Carboidratos da Dieta/metabolismo
3.
ACS Chem Biol ; 18(2): 356-366, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36728836

RESUMO

Diet-derived polysaccharides are an important carbon source for gut bacteria and shape the human gut microbiome. Acarbose, a compound used clinically to treat type 2 diabetes, is known to inhibit the growth of some bacteria on starches based on its activity as an inhibitor of α-glucosidases and α-amylases. In contrast to acarbose, montbretin A, a new drug candidate for the treatment of type 2 diabetes, has been reported to be more specific for the inhibition of α-amylase, notably human pancreatic α-amylase. However, the effects of both molecules on glycan metabolism across a larger diversity of human gut bacteria remain to be characterized. Here, we used ex vivo metabolic labeling of a human microbiota sample with fluorescent maltodextrin to identify gut bacteria affected by amylase inhibitors. Metabolic labeling was performed in the presence and absence of amylase inhibitors, and the fluorescently labeled bacteria were identified by fluorescence-activated cell sorting coupled with 16S rDNA amplicon sequencing. We validated the labeling results in cultured isolates and identified four gut bacteria species whose metabolism of maltodextrin is inhibited by acarbose. In contrast, montbretin A slowed the growth of only one species, supporting the fact that it is more selective. Metabolic labeling is a valuable tool to characterize glycan metabolism in microbiota samples and could help understand the untargeted impact of drugs on the human gut microbiota.


Assuntos
Acarbose , Diabetes Mellitus Tipo 2 , Humanos , Acarbose/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/metabolismo , Polissacarídeos/metabolismo , Amilases/farmacologia , Bactérias/metabolismo
4.
Cancer Discov ; 12(4): 1070-1087, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35031549

RESUMO

Several approaches to manipulate the gut microbiome for improving the activity of cancer immune-checkpoint inhibitors (ICI) are currently under evaluation. Here, we show that oral supplementation with the polyphenol-rich berry camu-camu (CC; Myrciaria dubia) in mice shifted gut microbial composition, which translated into antitumor activity and a stronger anti-PD-1 response. We identified castalagin, an ellagitannin, as the active compound in CC. Oral administration of castalagin enriched for bacteria associated with efficient immunotherapeutic responses (Ruminococcaceae and Alistipes) and improved the CD8+/FOXP3+CD4+ ratio within the tumor microenvironment. Moreover, castalagin induced metabolic changes, resulting in an increase in taurine-conjugated bile acids. Oral supplementation of castalagin following fecal microbiota transplantation from ICI-refractory patients into mice supported anti-PD-1 activity. Finally, we found that castalagin binds to Ruminococcus bromii and promoted an anticancer response. Altogether, our results identify castalagin as a polyphenol that acts as a prebiotic to circumvent anti-PD-1 resistance. SIGNIFICANCE: The polyphenol castalagin isolated from a berry has an antitumor effect through direct interactions with commensal bacteria, thus reprogramming the tumor microenvironment. In addition, in preclinical ICI-resistant models, castalagin reestablishes the efficacy of anti-PD-1. Together, these results provide a strong biological rationale to test castalagin as part of a clinical trial. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias , Transplante de Microbiota Fecal , Humanos , Camundongos , Polifenóis/farmacologia , Polifenóis/uso terapêutico
5.
Front Microbiol ; 13: 1020250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36938132

RESUMO

Rapid dietary changes, such as switching from high-forage to high-grain diets, can modify the rumen microbiome and initiate gastrointestinal distress, such as bloating. In such cases, feed additives, including prebiotics and live microbials, can be used to mitigate these negative consequences. Bio-Mos® is a carbohydrate-based prebiotic derived from yeast cells that is reported to increase livestock performance. Here, the responses of rumen bacterial cells to Bio-Mos® were quantified, sorted by flow cytometry using fluorescently-labeled yeast mannan, and taxonomically characterized using fluorescence in situ hybridization and 16S rRNA sequencing. Further, to evaluate the effects of bovine-adapted Bacteroides thetaiotaomicron administration as a live microbial with and without Bio-Mos® supplementation, we analyzed microbial fermentation products, changes to carbohydrate profiles, and shifts in microbial composition of an in vitro rumen community. Bio-Mos® was shown to be an effective prebiotic that significantly altered microbial diversity, composition, and fermentation; while addition of B. thetaiotaomicron had no effect on community composition and resulted in fewer significant changes to microbial fermentation. When combined with Bio-Mos®, there were notable, although not significant, changes to major bacterial taxa, along with increased significant changes in fermentation end products. These data suggest a synergistic effect is elicited by combining Bio-Mos® and B. thetaiotaomicron. This protocol provides a new in vitro methodology that could be extended to evaluate prebiotics and probiotics in more complex artificial rumen systems and live animals.

6.
Nat Commun ; 11(1): 721, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024848

RESUMO

Myo-inositol hexakisphosphate (IP6) is a natural product known to inhibit vascular calcification (VC), but with limited potency and low plasma exposure following bolus administration. Here we report the design of a series of inositol phosphate analogs as crystallization inhibitors, among which 4,6-di-O-(methoxy-diethyleneglycol)-myo-inositol-1,2,3,5-tetrakis(phosphate), (OEG2)2-IP4, displays increased in vitro activity, as well as more favorable pharmacokinetic and safety profiles than IP6 after subcutaneous injection. (OEG2)2-IP4 potently stabilizes calciprotein particle (CPP) growth, consistently demonstrates low micromolar activity in different in vitro models of VC (i.e., human serum, primary cell cultures, and tissue explants), and largely abolishes the development of VC in rodent models, while not causing toxicity related to serum calcium chelation. The data suggest a mechanism of action independent of the etiology of VC, whereby (OEG2)2-IP4 disrupts the nucleation and growth of pathological calcification.


Assuntos
Fosfatos de Inositol/química , Fosfatos de Inositol/farmacologia , Calcificação Vascular/tratamento farmacológico , 6-Fitase/metabolismo , Adenina/efeitos adversos , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Difusão Dinâmica da Luz , Etilenoglicol/química , Humanos , Injeções Subcutâneas , Fosfatos de Inositol/farmacocinética , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Ratos Sprague-Dawley , Uremia/tratamento farmacológico , Uremia/fisiopatologia , Calcificação Vascular/induzido quimicamente , Difração de Raios X
7.
Curr Opin Chem Biol ; 56: 10-15, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31678829

RESUMO

The human gastrointestinal tract hosts almost a trillion microorganisms, organized in a complex community known as the gut microbiota, an integral part of human physiology and metabolism. Indeed, disease-specific alterations in the gut microbiota have been observed in several chronic disorders, including obesity and inflammatory bowel diseases. Correcting these alterations could revert the development of such pathologies or alleviate their symptoms. Recently, the gut microbiota has been the target of drug discovery that goes beyond classic probiotic approaches. This short review examines the promises and limitations of the latest strategies designed to modulate the gut bacterial community, and it explores the druggability of the gut microbiota by focusing on the potential of small molecules and prebiotics.


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/virologia , Probióticos/metabolismo , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Descoberta de Drogas , Trato Gastrointestinal/metabolismo , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Prebióticos/microbiologia , Probióticos/farmacologia
8.
Eur J Pharm Biopharm ; 142: 142-152, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31220571

RESUMO

Despite many years of research and a few success stories with gene therapeutics, efficient and safe DNA delivery remains a major bottleneck for the clinical translation of gene-based therapies. Gene transfection with calcium phosphate (CaP) nanoparticles brings the advantages of low toxicity, high DNA entrapment efficiency and good endosomal escape properties. The macroscale aggregation of CaP nanoparticles can be easily prevented through surface coating with bisphosphonate conjugates. Bisphosphonates, such as alendronate, recently showed promising anticancer effects. However, their poor cellular permeability and preferential bone accumulation hamper their full application in chemotherapy. Here, we investigated the dual delivery of plasmid DNA and alendronate using CaP nanoparticles, with the goal to facilitate cellular internalization of both compounds and potentially achieve a combined pharmacological effect on the same or different cell lines. A pH-sensitive poly(ethylene glycol)-alendronate conjugate was synthetized and used to formulate stable plasmid DNA-loaded CaP nanoparticles. These particles displayed good transfection efficiency in cancer cells and a strong cytotoxic effect on macrophages. The in vivo transfection efficiency, however, remained low, calling for an improvement of the system, possibly with respect to the extent of particle uptake and their physical stability.


Assuntos
Fosfatos de Cálcio/química , Difosfonatos/química , Nanopartículas/química , Ácidos Nucleicos/administração & dosagem , Ácidos Nucleicos/química , Polietilenoglicóis/química , Alendronato/administração & dosagem , Alendronato/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , DNA/administração & dosagem , DNA/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Terapia Genética/métodos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Permeabilidade/efeitos dos fármacos , Plasmídeos/química , Transfecção/métodos
9.
Cell Chem Biol ; 26(1): 17-26.e13, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30482680

RESUMO

Clostridium difficile causes increasing numbers of life-threatening intestinal infections. Symptoms associated with C. difficile infection (CDI) are mediated by secreted protein toxins, whose virulence is modulated by intracellular auto-proteolysis following allosteric activation of their protease domains by inositol hexakisphosphate (IP6). Here, we explore the possibility of inactivating the C. difficile toxin B (TcdB) by triggering its auto-proteolysis in the gut lumen prior to cell uptake using gain-of-function small molecules. We anticipated that high calcium concentrations typically found in the gut would strongly chelate IP6, precluding it from pre-emptively inducing toxin auto-proteolysis if administered exogenously. We therefore designed IP6 analogs with reduced susceptibility to complexation by calcium, which maintained allosteric activity at physiological calcium concentrations. We found that oral administration of IP6 analogs attenuated inflammation and promoted survival in mouse models of CDI. Our data provide impetus to further develop small-molecule allosteric triggers of toxin auto-proteolysis as a therapeutic strategy.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/antagonistas & inibidores , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Inflamação/tratamento farmacológico , Ácido Fítico/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Infecções por Clostridium/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Ácido Fítico/administração & dosagem , Ácido Fítico/química , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/química
10.
ACS Appl Mater Interfaces ; 9(12): 10435-10445, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28266206

RESUMO

Calcium phosphate (CaP) nanoparticles are promising gene delivery carriers due to their bioresorbability, ease of preparation, high gene loading efficacy, and endosomal escape properties. However, the rapid aggregation of the particles needs to be addressed in order to have potential in vivo. In addition, there is a need to better understand the relationship between CaP nanoparticle properties and their interactions with cells. Here, a new synthesis route involving click chemistry was developed to prepare the PEGylated chelator PEG-inositol 1,3,4,5,6-pentakisphosphate (PEG-IP5) that can coat and stabilize CaP nanoparticles. Two methods (1 and 2) differing on the time of addition of the PEGylated chelator were employed to produce stabilized particles. Method 1 yielded amorphous aggregated spheres with a particle size of about 200 nm, whereas method 2 yielded 40 nm amorphous loose aggregates of clusters, which were quickly turned into needle bundle-like crystals of about 80 nm in a few hours. Nanoparticles prepared by method 1 were internalized with significantly higher efficiency in HepG2 cells than those prepared by method 2, and the uptake was dramatically influenced by the reaction time of Ca2+ and PO43- and sedimentation of the particles. Interestingly, morphological transformations were observed for both types of particles after different storage times, but this barely influenced their in vitro cellular uptake. The transfection efficiency of the particles prepared by method 1 was significantly higher, and none of the formulations tested showed signs of cytotoxicity. This study provides a better understanding of the properties (e.g., size, morphology, and crystallinity) of PEGylated CaP nanoparticles and how these influence the particles' in vitro uptake and transfection efficiency.


Assuntos
Nanopartículas , Fosfatos de Cálcio , Quelantes , Técnicas de Transferência de Genes , Tamanho da Partícula , Polietilenoglicóis , Transfecção
11.
Bioconjug Chem ; 28(2): 283-295, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27966887

RESUMO

Targeted delivery of therapeutic agents to hepatocytes is a particularly attractive strategy for the treatment of hepatocellular carcinoma and other liver diseases. The asialoglycoprotein receptor (ASGP-R) is abundantly expressed on hepatocytes and minimally found on extra-hepatic cells, making it an ideal entry gateway for hepatocyte-targeted therapy. Numerous multivalent ligands have been developed to target ASGP-R, among which well-defined multivalent ligands display especially high binding affinity to the receptor. Recently, several gene delivery systems based on such ligands for ASGP-R showed encouraging clinical results, drawing increasing interest in the scientific community and eventually promoting the improvement of current treatment for liver diseases. Here, we review ASGP-R targeting with a special emphasis on well-defined systems and properties such as the linker's length, hydrophilic-hydrophobic balance of the linker, and the spatial geometry of the scaffold. The present manuscript provides important guidelines for the design of multivalent ligands for ASGP-R.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Hepatócitos/metabolismo , Animais , Humanos , Ligantes
12.
Mol Ther Nucleic Acids ; 5(9): e364, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27648924

RESUMO

Nucleic acid therapy can be beneficial for the local treatment of gastrointestinal diseases that currently lack appropriate treatments. Indeed, several oligonucleotides (ONs) are currently progressing through clinical trials as potential treatments for inflammatory bowel diseases. However, due to low uptake of carrier-free ONs by mucosal cells, strategies aimed at increasing the potency of orally administered ONs would be highly desirable. In this work, we explored the silencing properties of chemically modified and highly resistant ONs derivatized with hydrophobic alkyl chain on intestinal epithelial cells. We screened a set of lipid-ON conjugates for the silencing of model Bcl-2 mRNA and selected 2'-deoxy-2'-fluoro-arabinonucleic acid modified ON bearing docosanoyl moiety (L-FANA) as the most potent candidate with lowest toxicity. The efficacy of L-FANA conjugate was preserved in simulated intestinal fluids and in the inverted transfection setup. Importantly, L-FANA conjugate was able to downregulate target gene expression at both mRNA and protein levels in a difficult-to-transfect polarized epithelial cell monolayer in the absence of delivery devices and membrane disturbing agents. These findings indicate that lipid-ON conjugates could be promising therapeutics for the treatment of intestinal diseases as well as a valuable tool for the discovery of new therapeutic targets.

13.
Org Lett ; 18(13): 3162-5, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27332109

RESUMO

There is a paucity of chiral phosphoramidite reagents or chiral catalysis methods for the synthesis of biologically relevant inositol phosphates. A new C2-symmetrical chiral phosphoramidite has been developed and successfully applied to the synthesis of a set of chiral inositol bisphosphates. The reagent allowed bis-phosphorylation and chiral resolution, resulting in a concise synthetic route, thus expanding the toolbox available for the preparation of biologically relevant inositol phosphates in high optical purity.

14.
Chembiochem ; 16(7): 1030-2, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25766971

RESUMO

Paradigms found: Inositol phosphates are biomolecules found ubiquitously in eukaryotes, in which they play a number of vital biological roles. Their enantioselective synthesis has recently received a boost from two complementary phosphorylation methods that could change the way they are synthesised, and hopefully provide invaluable chemical biology tools to further our understanding of this large family.


Assuntos
Fosfatos de Inositol/química , Fosfatos de Inositol/síntese química , Técnicas de Química Sintética , Estereoisomerismo
15.
Chem Commun (Camb) ; 51(26): 5721-4, 2015 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-25719505

RESUMO

We report a novel oral prodrug approach where a solubilizing polymer conjugated to the drug is designed to be released by the action of an exogenously administered agent in the intestine. A redox-sensitive self-immolating design was implemented, and the reconversion kinetics were studied for three reducible prodrugs.


Assuntos
Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Administração Oral , Líquidos Corporais/química , Líquidos Corporais/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/química , Cinética , Estrutura Molecular , Oxirredução , Polímeros/química , Pró-Fármacos/farmacocinética , Solubilidade
16.
Drug Discov Today ; 20(5): 602-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25499664

RESUMO

Significant progress has been made by industry and academia in the past two years to address the medical threats posed by Clostridium difficile infection. These developments provide an excellent example of how patient need has driven a surge of innovation in drug discovery. Indeed, only two drugs were approved for the infection in the past 30 years but there are 13 treatment candidates in clinical trials today. What makes the latter number even more remarkable is the diversity in the strategies represented (antibiotics, microbiota supplements, vaccines, antibiotic quenchers and passive immunization). In this review, we provide a snapshot of the current stage of these breakthroughs and argue that there is still room for further innovation in treating C. difficile infection.


Assuntos
Antibacterianos/uso terapêutico , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Descoberta de Drogas , Drogas em Investigação/uso terapêutico , Animais , Antibacterianos/química , Clostridioides difficile/patogenicidade , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/microbiologia , Drogas em Investigação/química , Interações Hospedeiro-Patógeno , Humanos
19.
J Am Chem Soc ; 136(37): 12868-71, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25185512

RESUMO

The use of stimuli-responsive bioactive molecules is an attractive strategy to circumvent selectivity issues in vivo. Here, we report an activatable cell penetrating peptide (CPP) strategy ultimately aimed at delivering nucleic acid drugs to the colon mucosa using bacterial azoreductase as the local reconversion trigger. Through screening of a panel of CPPs, we identified a sequence (M918) capable of carrying a nucleic acid analogue payload. A modified M918 peptide conjugated to a peptide nucleic acid (PNA) was shown to silence luciferase in colon adenocarcinoma cells (HT-29-luc). Reversible functionalization of the conjugate's lysine residues via an azobenzene self-immolative linkage abolished transfection activity, and the free CPP-PNA was recovered after reduction of the azobenzene bond. This activatable CPP conjugate platform could find applications in the selective delivery of nucleic acid drugs to the colon mucosa, opening therapeutic avenues in colon diseases.


Assuntos
Compostos Azo/química , Peptídeos Penetradores de Células/química , Ácidos Nucleicos Peptídicos/administração & dosagem , Ácidos Nucleicos Peptídicos/química , Polietilenoglicóis/química , Transfecção , Sequência de Aminoácidos , Linhagem Celular Tumoral , Colo/citologia , Colo/metabolismo , Inativação Gênica , Humanos , Dados de Sequência Molecular , Oxirredução , Ácidos Nucleicos Peptídicos/genética
20.
Eur J Pharm Biopharm ; 85(1): 5-11, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23958313

RESUMO

Cell-penetrating peptides have been widely investigated as delivery vehicles for oligonucleotides (e.g., siRNA and antisense oligonucleotides). Different delivery strategies can be used, such as co-incubation, direct conjugation, non-covalent complex, and modification on the surface of liposome or polymer complexes. However, several challenges remain for their preclinical and clinical development. Endosomal escape, lack of cell/tissue specificity, and toxicity are major concerns in the design of cell-penetrating peptide-mediated delivery systems. In this commentary, we highlight recent reports of cell-penetrating peptide incorporation into oligonucleotide delivery systems and underline the remaining challenges, particularly for preclinical and clinical applications.


Assuntos
Peptídeos Penetradores de Células/uso terapêutico , Sistemas de Liberação de Medicamentos , Terapia Genética , Oligonucleotídeos/administração & dosagem , Animais , Peptídeos Penetradores de Células/efeitos adversos , Química Farmacêutica/tendências , Sistemas de Liberação de Medicamentos/efeitos adversos , Sistemas de Liberação de Medicamentos/tendências , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Inativação Gênica , Terapia Genética/efeitos adversos , Terapia Genética/tendências , Humanos , Oligonucleotídeos/efeitos adversos , Oligonucleotídeos/farmacocinética , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/uso terapêutico , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/farmacocinética , RNA Interferente Pequeno/uso terapêutico , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...