Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 460(Pt 1): 140401, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39033640

RESUMO

The study evaluates the interaction between Calocybe indica mushroom polyphenols (phenolic acid) and kidney bean protein (KBPM), aiming to enhance vegan food quality. The mushrooms exhibited a carbohydrate content of 3.65%, an antioxidant activity of 55.04 ± 0.17%, and a phenolic content of 4.86 mg GAE/g. Caffeic and cinnamic acids were identified through high-pressure liquid chromatography. Various concentrations of KBPM were tested at phenolic acid concentrations of 0.025, 0.050, 0.1, 0.2, 0.4, 0.8, and 1%, among these, KBPM 0.2 demonstrated the highest binding efficiency of 99.40 ± 0.05%. Notably, this complex improved the protein's functional properties, such as solubility by 11.43%, water and oil holding capacities by 10.62% and 22.04%, and emulsion capacity and stability by 3.69% and 5.83%, respectively, compared to the native protein. The protein-phenolic acid complex also enhanced thermal stability, surface charge, amino acid content, and reduced particle size compared to native protein. These enhancements also improved protein digestibility and sensory attributes in a fruit-based smoothie.

2.
Food Sci Nutr ; 12(6): 3920-3934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873482

RESUMO

Lecithin is constituted of a glycerophospholipid mixture and is abundantly used as an emulsifying agent in various food applications including chocolate production. However, overconsumption of lecithin may create an adverse effect on human health. Thus, this study aims to replace the lecithin with plant-based gums. Different ratios of guar and arabic gum (25%-75%) and their blend (25%-75%) were employed as partial replacement of lecithin. Milk chocolate prepared using 40% guar gum (60GGL [guar gum, lecithin]), 25% arabic gum (75AGL [arabic gum, lecithin]), and a blend of 15 arabic gum and 10 guar gum (65AGGL [arabic gum, guar gum, lecithin]) showed similar rheological behavior as compared to control chocolate (100% lecithin). The fat content of 65AGGL (37.85%) was significantly lower than that of the control sample (43.37%). Rheological behavior exhibited shear-thinning behavior and samples (60GGL-75GGL-80GGL, 65AGL-75AGL, and 65AGGL-75AGGL) showed similar rheological properties as compared to control. The chocolate samples (60GGL and 65AGGL) showed significantly (p < .05) higher hardness values (86.01 and 83.55 N) than the control (79.95 N). As well, gum-added chocolates exhibited higher thermal stability up to 660°C as compared to the control sample. The Fourier transform infrared spectroscopy (FTIR) analysis revealed predominant ß-(1 → 4) and ß-(1 → 6) glycosidic linkages of the gums and lecithin. Sensory evaluation revealed a comparable score of gum-added milk chocolate in comparison to control samples in terms of taste, texture, color, and overall acceptance. Thus, plant exudate gums could be an excellent alternative to lecithin in milk chocolate, which can enhance the textural properties and shelf life.

3.
Foods ; 13(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38890965

RESUMO

This study aims to focus on developing a food supplement for the geriatric population using disposal mushrooms, oats, and lactose-free milk powder. Lactose intolerance is most common in older adults, raising the demand for lactose-free foods. One of the major global challenges currently faced by humankind is food waste (FW). Most of the food that is produced for human consumption has not been utilized completely (1/3rd-1/2 unutilized), resulting in agricultural food waste. Mushrooms are highly valuable in terms of their nutritional value and medicinal properties; however, a significant percentage of mushroom leftovers are produced during mushroom production that do not meet retailers' standards (deformation of caps/stalks) and are left unattended. Oats are rich in dietary fibre beta-glucan (55% water soluble; 45% water insoluble). Lactose-free milk powder, oats, and dried mushroom leftover powder were blended in different ratios. It was observed that increasing the amount of mushroom leftover powder increases the protein content while diluting calories. The product with 15% mushroom powder and 30% oat powder showed the highest sensory scores and the lowest microbial count. The GCMS and FTIR analyses confirmed the presence of ergosterol and other functional groups. The results of the XRD analysis showed that the product with 15% mushroom powder and 30% oat powder had a less crystalline structure than the product with 5% mushroom powder and 40% oat powder and the product with 10% mushroom powder and 35% oat powder, resulting in more solubility. The ICP-OES analysis showed significant concentrations of calcium, potassium, magnesium, sodium, and zinc. The coliform count was nil for the products, and the bacterial count was below the limited range (3 × 102 cfu/g). The product with 15% mushroom powder and 30% oat powder showed the best results, so this developed product is recommended for older adults.

4.
Carbohydr Polym ; 339: 122228, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823903

RESUMO

Meat products consumption is rising globally, but concerns about sustainability, fat content, and shelf life. Synthetic additives and preservatives used for extending the shelf life of meat often carry health and environmental drawbacks. Seed mucilage, natural polysaccharides, possesses unique functional properties like water holding, emulsifying, and film forming, offering potential alternatives in meat processing and preservation. This study explores the application of seed mucilage from diverse sources (e.g., flaxseed, psyllium, basil) in various meat and meat products processing and preservation. Mucilage's water-holding and emulsifying properties can potentially bind fat and decrease the overall lipid content in meat and meat-based products. Moreover, antimicrobial and film-forming properties of mucilage can potentially inhibit microbial growth and reduce oxidation, extending the shelf life. This review emphasizes the advantages of incorporating mucilage into processing and coating strategies for meat and seafood products.


Assuntos
Conservação de Alimentos , Produtos da Carne , Mucilagem Vegetal , Sementes , Sementes/química , Produtos da Carne/análise , Mucilagem Vegetal/química , Conservação de Alimentos/métodos , Linho/química , Biopolímeros/química , Polissacarídeos/química , Animais , Psyllium/química , Manipulação de Alimentos/métodos
5.
Int J Biol Macromol ; 273(Pt 2): 132915, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844289

RESUMO

Non-conventional starch sources have attracted substantial attention due to their preferred physicochemical and mechanical properties similar to conventional sources. This study aimed to enhance the mechanical properties of mango seed kernel starch (MSKS) based films reinforced with carboxymethyl cellulose (CMC) and gum acacia (GA). Physical modification of MSKS was carried out using microwave-assisted at 180 W for 1 min. SEM results confirmed the oval and irregular shape of starch. The particle size of native starch (NS) (754.9 ± 20.4 nm) was higher compared to modified starch (MS) 336.6 ± 88.9 nm with a surface charge of -24.80 ± 3.92 to -34.87 ± 3.92 mV, respectively. Several functional groups including hydroxyl (OH) and carboxyl (CH) were confirmed in NS and MS. Different ratios of the MS, NS, CMC, and GA were used for the fabrication of films. Results revealed the higher tensile strength of M/C/G-1 (57.45 ± 0.05 nm) and M/C/G-2 (50.77 ± 0.58), compared to control C-4 (100 % native starch) (4.82 ± 0.04) respectively. The ternary complex provided excellent permeability against moisture and the film with a higher starch concentration confirmed the uniform thickness (0.09-0.10 mm). Furthermore, selected films (M/C/G-1 and M/C/G-2) reduced the microbial growth and weight loss of the bun compared to the control (C-4) film. Thus, the ternary complex maintained the freshness of the bun-bread for 14 days. It can be potentially used as a cost-effective and eco-friendly packaging material for food applications.


Assuntos
Carboximetilcelulose Sódica , Goma Arábica , Mangifera , Sementes , Amido , Carboximetilcelulose Sódica/química , Amido/química , Goma Arábica/química , Mangifera/química , Sementes/química , Resistência à Tração , Embalagem de Alimentos/métodos
6.
Clin Nutr ESPEN ; 62: 10-21, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901929

RESUMO

Vitamin D is amongst the most important biomolecules to regularize and help in sustainable health, however, based on the studies, deficiency of this multifunctional vitamin is common. Vitamin D, besides playing a role in the form of vitamins, also acts as a multifunctional hormone (steroid). Vitamin D is synthesized inside the body through various steps starting from ultraviolet radiation exposure and comes from limited food sources, however, vitamin D-fortified food products are still among the major sources of vitamin D. Current review, focused on how vitamin D acts as a multifunctional molecule by effecting different functions in the body in normal or specific conditions and how it is important in fortification and how it can be managed from the available literature till date. During the Covid pandemic, people were aware of vitamin D and took supplementation, fortified foods, and sat under sunlight. As COVID prevalence decreases, people start forgetting about vitamin D. Vitamin D is very crucial for overall well-being as it has protective effects against a broad range of diseases as it can reduce inflammation, cancer cell growth and helps in controlling infection, increase metabolism, muscle, and bone strength, neurotransmitter expression, etc. Therefore, the present review is to provoke the population, and fulfillment of the vitamin D recommended dietary allowance daily must be confirmed.


Assuntos
COVID-19 , SARS-CoV-2 , Deficiência de Vitamina D , Vitamina D , Humanos , Vitamina D/uso terapêutico , Vitamina D/administração & dosagem , Suplementos Nutricionais , Alimentos Fortificados , Vitaminas , Recomendações Nutricionais , Pandemias
7.
Food Sci Nutr ; 12(5): 3150-3163, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726405

RESUMO

Polysaccharides from non-conventional sources, such as fruits, have gained significant attention recently. Aegle marmelos (Bael), a non-conventional fruit, is an excellent source of biologically active components with potential indigenous therapeutic and food applications. Apart from polyphenolic components, this is an excellent source of mucilaginous polysaccharides. Polysaccharides are one the major components of bael fruit, having a high amount of galactose and glucuronic acid, which contributes to its potential therapeutic properties. Therefore, this review emphasizes the conventional and emerging techniques of polysaccharide extraction from bael fruit. Insight into the attributes of polysaccharide components, their techno-functional properties, characterization of bael fruit polysaccharide, emulsifying properties, binding properties, reduction of hazardous dyes, application of polysaccharides in film formation, application of polysaccharide as a nanocomposite, and biological activities of bael fruit polysaccharides are discussed. This review also systematically overviews the relationship between extraction techniques, structural characteristics, and biological activities. Additionally, recommendations, future perspectives, and new valuable insight towards better utilization of bael fruit polysaccharide have been given importance, which can be promoted in the long term.

8.
Food Res Int ; 186: 114344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729696

RESUMO

The research aimed to evaluate the effect of ultrasonication and succinylation on the functional, iron binding, physiochemical, and cellular mineral uptake efficacy of chickpea protein concentrate. Succinylation resulted in significant improvements in the water-holding capacity (WHC) (25.47 %), oil-holding capacity (OHC) (31.38 %), and solubility (5.80 %) of the chickpea protein-iron complex. Mineral bioavailability significantly increased by 4.41 %, and there was a significant increase in cellular mineral uptake (64.64 %), retention (36.68 %), and transport (27.96 %). The ferritin content of the succinylated chickpea protein-iron complex showed a substantial increase of 66.31%. Furthermore, the dual modification approach combining ultrasonication and succinylation reduced the particle size of the protein-iron complex with a substantial reduction of 83.25 %. It also resulted in a significant enhancement of 51.5 % in the SH (sulfhydryl) content and 48.92 % in the surface hydrophobicity. Mineral bioavailability and cellular mineral uptake, retention, and transport were further enhanced through dual modification. In terms of application, the addition of single and dual-modified chickpea protein-iron complex to a fruit-based smoothie demonstrated positive acceptance in sensory attributes. Overall, the combined approach of succinylation and ultrasonication to the chickpea protein-iron complex shows a promising strategy for enhancing the physiochemical and techno-functional characteristics, cellular mineral uptake, and the development of vegan food products.


Assuntos
Disponibilidade Biológica , Cicer , Ferro , Cicer/química , Ferro/química , Ferro/metabolismo , Humanos , Alimentos Fortificados , Proteínas de Plantas/química , Digestão , Minerais/química , Células CACO-2 , Ácido Succínico/química , Tamanho da Partícula , Manipulação de Alimentos/métodos , Solubilidade , Ferritinas/química , Ferritinas/metabolismo
9.
Int J Biol Macromol ; 271(Pt 2): 132688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806080

RESUMO

Gums are high-molecular-weight compounds with hydrophobic or hydrophilic characteristics, which are mainly comprised of complex carbohydrates called polysaccharides, often associated with proteins and minerals. Various innovative modification techniques are utilized, including ultrasound-assisted and microwave-assisted techniques, enzymatic alterations, electrospinning, irradiation, and amalgamation process. These methods advance the process, reducing processing times and energy consumption while maintaining the quality of the modified gums. Enzymes like xanthan lyases, xanthanase, and cellulase can selectively modify exudate gums, altering their structure to enhance their properties. This precise enzymatic approach allows for the use of exudate gums for specific applications. Exudate gums have been employed in nanotechnology applications through techniques like electrospinning. This enables the production of nanoparticles and nanofibers with improved properties, making them suitable for the drug delivery system, tissue engineering, active and intelligient food packaging. The resulting modified exudate gums exhibit improved rheological, emulsifying, gelling, and other functional properties, which expand their potential applications. This paper discusses novel applications of these modified gums in the pharmaceutical, food, and industrial sectors. The ever-evolving field presents diverse opportunities for sustainable innovation across these sectors.


Assuntos
Gomas Vegetais , Gomas Vegetais/química , Sistemas de Liberação de Medicamentos , Humanos
10.
Foods ; 13(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731769

RESUMO

Plant-based proteins have gained popularity in the food industry as a good protein source. Among these, chickpea protein has gained significant attention in recent times due to its high yields, high nutritional content, and health benefits. With an abundance of essential amino acids, particularly lysine, and a highly digestible indispensable amino acid score of 76 (DIAAS), chickpea protein is considered a substitute for animal proteins. However, the application of chickpea protein in food products is limited due to its poor functional properties, such as solubility, water-holding capacity, and emulsifying and gelling properties. To overcome these limitations, various modification methods, including physical, biological, chemical, and a combination of these, have been applied to enhance the functional properties of chickpea protein and expand its applications in healthy food products. Therefore, this review aims to comprehensively examine recent advances in Cicer arietinum (chickpea) protein extraction techniques, characterizing its properties, exploring post-modification strategies, and assessing its diverse applications in the food industry. Moreover, we reviewed the nutritional benefits and sustainability implications, along with addressing regulatory considerations. This review intends to provide insights into maximizing the potential of Cicer arietinum protein in diverse applications while ensuring sustainability and compliance with regulations.

11.
Int J Biol Macromol ; 268(Pt 1): 131687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642692

RESUMO

In future, global demand for low-cost-sustainable materials possessing good strength is going to increase tremendously, to replace synthetic plastic materials, thus motivating scientists towards green composites. The PLA has been the most promising sustainable bio composites, due to its inherent antibacterial property, biodegradability, eco-friendliness, and good thermal and mechanical characteristics. However, PLA has certain demerits such as poor water and gas barrier properties, and low glass transition temperature, which restricts its use in food packaging applications. To overcome this, PLA is blended with polysaccharides such as gum and cellulose to enhance the water barrier, thermal, crystallization, degradability, and mechanical properties. Moreover, the addition of these polysaccharides not only reduces the production cost but also helps in manufacturing packaging material with superior quality. Hence this review focuses on various fabrication techniques, degradation of the ternary composite, and its application in the food sector. Moreover, this review discusses the enhanced barrier and mechanical properties of the ternary blend packaging material. Incorporation of gum enhanced flexibility, while the reinforcement of cellulose improved the structural integrity of the ternary composite. The unique properties of this ternary composite make it suitable for extending the shelf life of food packaging, specifically for fruits, vegetables, and fried products. Future studies must be conducted to investigate the optimization of formulations for specific food types, explore scalability for industrial applications, and integrate these composites with emerging technologies (3D/4D printing).


Assuntos
Celulose , Embalagem de Alimentos , Poliésteres , Embalagem de Alimentos/métodos , Celulose/química , Poliésteres/química , Gomas Vegetais/química
12.
Int J Biol Macromol ; 267(Pt 1): 131431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593896

RESUMO

In recent years, there increment demand for healthier food options that can replace high-fat ingredients in bakery products without compromising their taste and texture. This research was focused on a formulation study of the blend of nano polysaccharides derived from aloe vera and guar gum at various concentrations. This study selected the blend concentration of 1 % aloe vera mucilage (AM) and 1 % guar gum (GG) due to its optimal gelling properties. Different magnetic stirring time durations were employed to formulate AGB (aloe vera guar gum blend). The particle size of AGB revealed the lowest nanoparticle size (761.03 ± 62 nm) with a stirring time of 4 h. The FTIR analysis found the presence of monomer sugars in AGB nano polysaccharide powder such as mannose, arabinose, and glucose. The thermogram results displayed an endothermic peak for all samples with a glass transition temperature (Tg) between 16 and 50 °C. The SEM image of the AGB indicated uniform spherical particles. The AGB powder exhibited good functional properties. The antimicrobial activity of AGB powder against Staphylococcus aureus, Escherichia coli, and Candida albicans was 22.32 ± 0.02, 21.56 ± 0.02, and 19.33 ± 0.33 mm, respectively. Furthermore, the effects of different levels of vegetable fat replacement with AGB powder on cake sensory properties, thermal stability, and texture characteristics were also examined. Notably, the cake containing a 50 % substitution of vegetable fat with AGB (C50) supplied desirable physicochemical, textural, and sensory properties. These results can provide advantages for the development of fat replacers in bakery products.


Assuntos
Aloe , Galactanos , Mananas , Gomas Vegetais , Polissacarídeos , Galactanos/química , Mananas/química , Mananas/farmacologia , Gomas Vegetais/química , Aloe/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Substitutos da Gordura/química , Candida albicans/efeitos dos fármacos , Tamanho da Partícula , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas/química
14.
Gels ; 10(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38391425

RESUMO

Taro mucilage is a cost-effective, eco-friendly, and water-soluble edible viscous polysaccharide, which possesses diverse techno-functional properties including gelling and anti-microbial. Therefore, the objective of this study was to formulate and evaluate the efficacy of taro mucilage nanohydrogel for the shelf-life enhancement of fresh-cut apples. Taro mucilage was extracted using cold water extraction, and the yield of mucilage was found to be 2.95 ± 0.35% on a dry basis. Different concentrations of mucilage (1, 2, 3, 4, and 5%) were used to formulate the nanohydrogel. A smaller droplet size of 175.61 ± 0.92 nm was observed at 3% mucilage, with a zeta potential of -30.25 ± 0.94 mV. Moreover, FTIR data of nanohydrogel revealed the functional groups of various sugars, uronic acids, and proteins. Thermal analysis of nanohydrogel exhibited weight loss in three phases, and maximum weight loss occurred from 110.25 °C to 324.27 °C (65.16%). Nanohydrogel showed shear-thinning fluid or pseudo-plastic behavior. Coating treatment of nanohydrogel significantly reduced the weight loss of fresh-cut apples (8.72 ± 0.46%) as compared to the control sample (12.25 ± 0.78%) on the 10th day. In addition, minor changes were observed in the pH for both samples during the 10 days of storage. Titrable acidity of control fresh-cut apples measured 0.22 ± 0.05% on day 0, rising to 0.42 ± 0.03% on the 10th day, and for coated fresh-cut apples, it was observed to be 0.24 ± 0.07% on the 0th day and 0.36 ± 0.06% on 10th day, respectively. Furthermore, the total soluble solids (TSS) content of both control and coated fresh-cut apples measured on the 0th day was 11.85 ± 0.65% and 12.33 ± 0.92%, respectively. On the 10th day, these values were significantly increased (p < 0.05) to 16.38 ± 0.42% for the control and 14.26 ± 0.39% for the coated sliced apples, respectively. Nanohydrogel-coated fresh-cut apples retained antioxidant activity and vitamin C content as compared to the control sample. Taro mucilage nanohydrogel-based edible coating showed distinct anti-microbial activity against psychrotrophic, aerobic, and yeast molds. In summary, taro mucilage nanohydrogel can be used as a cost-effective natural coating material for the shelf-life enhancement or freshness maintenance of fresh-cut apples.

15.
Food Chem ; 445: 138671, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367556

RESUMO

Chickpea protein, a valuable plant-based source, offers versatile applications, yet the impact of modifications like succinylation and ultrasonication on its properties remains unclear. This study explored dual succinylation and ultrasonication modification to enhance its functionality and application. Modified chickpea protein with a degree of succinylation of 96.75 %, showed enhanced water holding capacity 39.83 %, oil holding capacity 54.02 %, solubility 7.20 %, and emulsifying capacity 23.17 %, compared to native protein. Despite reduced amino acid content (64.50 %), particularly lysine, succinylation increased sulfhydryl by 1.74 %, reducing hydrophobicity (Ho) by 41.87 % and causing structural changes. Ultrasonication further reduced particle size by 82.57 % and increased zeta potential and amino acid content (57.47 %). The dual-modified protein exhibited a non-significant increase in antimicrobial activity against Staphylococcus aureus (25.93 ± 1.36 mm) compared to the native protein (25.28 ± 1.05 mm). In conclusion, succinylation combined with ultrasonication offers a promising strategy to enhance chickpea protein's physicochemical properties for diverse applications.


Assuntos
Aminoácidos , Cicer , Aminoácidos/metabolismo , Cicer/química , Proteínas/metabolismo , Solubilidade , Água/metabolismo
16.
Sci Total Environ ; 912: 169224, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38101639

RESUMO

Water pollution by pathogenic bacteria and organic dyes poses potential health hazards for human and aquatic life. This study aims to explore the potential of bioactive compounds extracted from two microalgae species (Spirogyra and Ocillatoria) for water pollution control. The optimization of the extraction process for bioactive compounds resulted in the highest yield at 25 min for Spirogyra and 30 min for Ocillatotia species. Further, the extracted bioactive compounds were analyzed using Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GC-MS). The bioactive compounds exhibited significant antibacterial activity against gram-positive and gram-negative bacteria. Notably, Spirogyra species exhibited a higher zone of inhibition (19.5-20.7 mm) than Ocillatoria species (17.0-18.0 mm) against both gram-positive and gram-negative bacterial strains. Furthermore, the photocatalytic potential of these bioactive compounds was examined by assessing the photodegradation of methylene blue (MB) and crystal violet (CV) dyes under different light sources. The findings revealed that Spirogyra species exhibited better photocatalytic activity than Ocillatoria species for MB and CV. For MB, 89.75 %, 77.82 % and 63.54 % were photodegraded when exposed to UV light, sunlight and visible light using Spirogyra extract, compared to 84.90 %, 74.70 % and 58.30 % by Ocillatoria extract. Regarding CV, Spirogyra extract achieved photodegradation efficiency of 88.94 %, 76.59 % and 64.50 % under UV light, sunlight and visible light, higher than 83.60 %, 73.60 % and 57.70 % by Ocillatoria extract. Both Spirogyra and Ocillatoria species demonstrated the best performance for dye photodegradation under UV irradiation, demonstrating great potential for nature-based water treatment.


Assuntos
Microalgas , Spirogyra , Humanos , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Azul de Metileno/química , Corantes , Catálise
17.
Food Sci Nutr ; 11(11): 6987-6999, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970395

RESUMO

In recent years, the demand and market for minimally processed fruits are increasing worldwide. Fresh-cut apples are extremely sensitive to environmental factors including oxygen, temperature, and microorganisms in resulting the browning of apples. Therefore, in this study, different concentration of blended edible-coating solution was prepared using Aloe vera and carboxymethyl cellulose (1:1, 1:2, 2:1, 3:3, 3:2, 4:2, 2:4, 3:4, and 4:3, respectively). Lease particle size (101.74 ± 0.67 nm) of the coating solution was observed with 3% A. vera and 2% carboxymethyl cellulose (CMC). Afterward, the shelf life of the apples was evaluated for 10 days at refrigeration condition. Results showed that a significant difference was found in weight loss of coated (6.42%-10.26%) and uncoated apples (8.12%-15.32%) for 2-10 days. Moreover, the titrable acidity of the cut apples increased during the storage time. Rheological data emerged that the viscosity of the coating solution decreases with the increasing temperature from 0 to 50°C. Fourier transform infrared spectroscopy data confirmed the presence of hydroxyl group (-OH), C=O, C-O, and N-H banding in the A. vera, CMC, and blend-coating solution. The blend solution indicated excellent antimicrobial efficiency. Total phenolic content of coated and uncoated apples at 0 day was 737.55 mg GAE kg-1 for uncoated and 717.88 mg GAE kg-1, respectively. Whereas, aerobic and psychrotrophic bacteria counts for edible coated apples significantly lower than control apples. For coated apples, aerobic and psychrotrophic bacteria counts were 1.59 ± 0.84 and 1.25 ± 0.49 log CFU g-1 were 4.26 ± 0.67 and 2.68 ± 0.22 log CFU g-1 at 10th day, respectively. Overall, it can be inferred that blend of A. vera and carboxymethyl cellulose could be used as a nontoxic potential anti-browning and antimicrobial component for the enhancement of the shelf life and additional nutritional value of fresh-cut apples.

18.
Foods ; 12(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959017

RESUMO

Minerals play an important role in maintaining human health as the deficiency of these minerals can lead to serious health issues. To address these deficiencies, current research efforts are actively investigating the utilization of protein-mineral complexes as eco-friendly, non-hazardous, suitable mineral fortifiers, characterized by minimal toxicity, for incorporation into food products. Thus, we reviewed the current challenges in incorporating the cereal-legume protein-inorganic minerals complexes' structure, binding properties, and toxicity during fortification on human health. Moreover, we further reviewed the development of protein-mineral complexes, characterization, and their food applications. The use of inorganic minerals has been associated with several toxic effects, leading to tissue-level toxicity. Cereal- and legume-based protein-mineral complexes effectively reduced the toxicity, improved bone mineral density, and has antioxidant properties. The characterization techniques provided a better understanding of the binding efficiency of cereal- and legume-based protein-mineral complexes. Overall, understanding the mechanism and binding efficiency underlying protein-mineral complex formation provided a novel insight into the design of therapeutic strategies for mineral-related diseases with minimal toxicity.

19.
Gels ; 9(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998994

RESUMO

Taro rhizomes are a rich source of polysaccharides, including starch and mucilage. However, mucilage has excellent anti-microbial efficacy, and unique gel-forming and techno-functional properties. Therefore, this study aimed to extract and utilize taro mucilage (TM), which is viscous and has a gel-like texture, for the shelf-life enhancement of fresh-cut brinjals (eggplants). Mucilage was extracted using hot-water extraction and the yield was calculated to be 6.25 ± 0.87% on a dry basis. Different formulations of coating gel solutions were prepared: 1, 2, 3, 4, 5, 6, and 7%. The selection of the coating gel solution was carried out based on particle size. The smallest particle size was observed in treatment T5 (154 ± 0.81 nm) and zeta potential -27.22 ± 0.75 mV. Furthermore, cut brinjals were coated with the prepared mucilage gel solution and this showed a significant effect on the overall physicochemical properties of cut brinjals. Maximum weight loss occurred on the 10th day (12.67 ± 0.24%), as compared with coated brinjals (8.99 ± 0.42%). Minor changes were observed in pH, for the control sample significantly decreased from 4.58 ± 0.45 to 2.99 ± 0.75 on the 0th day to the 10th day, respectively. Titrable acidity of coated and uncoated cut brinjals was found to be at 0.31 ± 0.44% on the 0th day, which increased up to 0.66 ± 0.20% for the control and 0.55 ± 0.68% for coated brinjals on the 10th day. The taro mucilage coating gel (TMCG) solution showed pseudo-plastic behavior or shear-thinning fluid behavior. FTIR data confirmed the existence of several functional groups including various sugars, proteins, and hydroxylic groups. Antioxidant activity of coated and uncoated cut brinjals was found to be 22.33 ± 0.37% and 22.15 ± 0.49%, respectively. The TMCG solution showed effective results towards the various food pathogenic microorganisms. Overall, it is a natural, renewable resource that is biodegradable. This makes it an environmentally friendly alternative to synthetic additives or thickeners. It is cost effective, easily available, eco-friendly, and non-toxic. This can be an attractive feature for consumers looking for sustainable and eco-friendly options.

20.
Int J Biol Macromol ; 253(Pt 8): 127543, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37866555

RESUMO

Lotus (Nelumbo nucifera G.) rhizomes are an under-utilized and sustainable starch source that constitutes up to 20 % starch. The review mainly focused on the extraction methods of starch, the chemical composition of LRS, and techno-functional characteristics such as swelling power, solubility, in vitro digestibility, pasting property, and gelatinization is highlighted in LRS review. Lotus rhizome starch (LRS) is also used as a water retention agent, thickening, gelling, stabilizing, and filling in food and non-food applications. Native starch has limited functional characteristics in food applications so by modifying the starch, functional characteristics are enhanced. Single and dual treatment processes are available to enhance microstructural properties, resistant starch, techno-functional, morphological, and, film-forming properties. Compared with other starch sources, there is a lack of systematic information on the LRS. Many industries are interested in developing food products based on starch such as nanoparticles, hydrogels, edible films, and many others. Additionally, there are several recommendations to improve the applications in the food industry. Finally, we provide an outlook on the future possibility of LRS.


Assuntos
Lotus , Nelumbo , Amido/química , Nelumbo/química , Rizoma/química , Lotus/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA