Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 102(3): 151341, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37459799

RESUMO

ING1 is a chromatin targeting subunit of the Sin3a histone deacetylase (HDAC) complex that alters chromatin structure to subsequently regulate gene expression. We find that ING1 knockdown increases expression of Twist1, Zeb 1&2, Snai1, Bmi1 and TSHZ1 drivers of EMT, promoting EMT and cell motility. ING1 expression had the opposite effect, promoting epithelial cell morphology and inhibiting basal and TGF-ß-induced motility in 3D organoid cultures. ING1 binds the Twist1 promoter and Twist1 was largely responsible for the ability of ING1 to reduce cell migration. Consistent with ING1 inhibiting Twist1 expression in vivo, an inverse relationship between ING1 and Twist1 levels was seen in breast cancer samples from The Cancer Genome Atlas (TCGA). The HDAC inhibitor vorinostat is approved for treatment of multiple myeloma and cutaneous T cell lymphoma and is in clinical trials for solid tumours as adjuvant therapy. One molecular target of vorinostat is INhibitor of Growth 2 (ING2), that together with ING1 serve as targeting subunits of the Sin3a HDAC complex. Treatment with sublethal (LD25-LD50) levels of vorinostat promoted breast cancer cell migration several-fold, which increased further upon ING1 knockout. These observations indicate that correct targeting of the Sin3a HDAC complex, and HDAC activity in general decreases luminal and basal breast cancer cell motility, suggesting that use of HDAC inhibitors as adjuvant therapies in breast cancers that are prone to metastasize may not be optimal and requires further investigation.


Assuntos
Neoplasias da Mama , Inibidores de Histona Desacetilases , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Cromatina , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Vorinostat/farmacologia
2.
Nat Commun ; 14(1): 3062, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244935

RESUMO

Self-renewal is a crucial property of glioblastoma cells that is enabled by the choreographed functions of chromatin regulators and transcription factors. Identifying targetable epigenetic mechanisms of self-renewal could therefore represent an important step toward developing effective treatments for this universally lethal cancer. Here we uncover an epigenetic axis of self-renewal mediated by the histone variant macroH2A2. With omics and functional assays deploying patient-derived in vitro and in vivo models, we show that macroH2A2 shapes chromatin accessibility at enhancer elements to antagonize transcriptional programs of self-renewal. macroH2A2 also sensitizes cells to small molecule-mediated cell death via activation of a viral mimicry response. Consistent with these results, our analyses of clinical cohorts indicate that high transcriptional levels of this histone variant are associated with better prognosis of high-grade glioma patients. Our results reveal a targetable epigenetic mechanism of self-renewal controlled by macroH2A2 and suggest additional treatment approaches for glioblastoma patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Histonas/genética , Histonas/metabolismo , Glioblastoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Cromatina/metabolismo , Epigênese Genética , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
3.
Anat Rec (Hoboken) ; 306(5): 1062-1087, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35735750

RESUMO

The family of death-associated protein kinases (DAPKs) and DAPK-related apoptosis-inducing protein kinases (DRAKs) act as molecular switches for a multitude of cellular processes, including apoptotic and autophagic cell death events. This review summarizes the mechanisms for kinase activity regulation and discusses recent molecular investigations of DAPK and DRAK family members in the intestinal epithelium. In general, recent literature convincingly supports the importance of this family of protein kinases in the homeostatic processes that govern the proper function of the intestinal epithelium. Each of the DAPK family of proteins possesses distinct biochemical properties, and we compare similarities in the information available as well as those cases where functional distinctions are apparent. As the prototypical member of the family, DAPK1 is noteworthy for its tumor suppressor function and association with colorectal cancer. In the intestinal epithelium, DAPK2 is associated with programmed cell death, potential tumor-suppressive functions, and a unique influence on granulocyte biology. The impact of the DRAKs in the epithelium is understudied, but recent studies support a role for DRAK1 in inflammation-mediated tumor growth and metastasis. A commentary is provided on the potential importance of DAPK3 in facilitating epithelial restitution and wound healing during the resolution of colitis. An update on efforts to develop selective pharmacologic effectors of individual DAPK members is also supplied.


Assuntos
Apoptose , Neoplasias , Humanos , Proteínas Quinases Associadas com Morte Celular/metabolismo , Proteínas Reguladoras de Apoptose , Intestinos
4.
Cancers (Basel) ; 14(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36230865

RESUMO

Cancer stem cells (CSCs) represent a therapy-resistant reservoir in glioblastoma (GBM). It is now becoming clear that epigenetic and chromatin remodelling programs link the stemlike behaviour of CSCs to their treatment resistance. New evidence indicates that the epigenome of GBM cells is shaped by intrinsic and extrinsic factors, including their genetic makeup, their interactions and communication with other neoplastic and non-neoplastic cells, including immune cells, and their metabolic niche. In this review, we explore how all these factors contribute to epigenomic heterogeneity in a tumour and the selection of therapy-resistant cells. Lastly, we discuss current and emerging experimental platforms aimed at precisely understanding the epigenetic mechanisms of therapy resistance that ultimately lead to tumour relapse. Given the growing arsenal of drugs that target epigenetic enzymes, our review addresses promising preclinical and clinical applications of epidrugs to treat GBM, and possible mechanisms of resistance that need to be overcome.

5.
Inflamm Bowel Dis ; 28(10): 1485-1496, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35604388

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a progressive disorder that elevates the risk of colon cancer development through a colitis-dysplasia-carcinoma sequence. Gene expression profiling of colitis-associated lesions obtained from patients with varied extents of UC can be mined to define molecular panels associated with colon cancer development. METHODS: Differential gene expression profiles of 3 UC clinical subtypes and healthy controls were developed for the GSE47908 microarray data set of healthy controls, left-sided colitis, pancolitis, and colitis-associated dysplasia (CAD) using limma R. RESULTS: A gene ontology enrichment analysis of differentially expressed genes (DEGs) revealed a shift in the transcriptome landscape as UC progressed from left-sided colitis to pancolitis to CAD, from being immune-centric to being cytoskeleton-dependent. Hippo signaling (via Yes-associated protein [YAP]) and Ephrin receptor signaling were the top canonical pathways progressively altered in concert with the pathogenic progression of UC. A molecular interaction network analysis of DEGs in left-sided colitis, pancolitis, and CAD revealed 1 pairwise line, or edge, that was topologically important to the network structure. This edge was found to be highly enriched in actin-based processes, and death-associated protein kinase 3 (DAPK3) was a critical member and sole protein kinase member of this network. Death-associated protein kinase 3 is a regulator of actin-cytoskeleton reorganization that controls proliferation and apoptosis. Differential correlation analyses revealed a negative correlation for DAPK3-YAP in healthy controls that flipped to positive in left-sided colitis. With UC progression to CAD, the DAPK3-YAP correlation grew progressively more positive. CONCLUSION: In summary, DAPK3 was identified as a candidate gene involved in UC progression to dysplasia.


Our investigation verified pancolitis as a conduit for ulcerative colitis advancement from left-sided colitis to dysplasia and uniquely identified dysregulation of actin reorganization, with death-associated protein kinase 3 and Yes-associated protein as key molecular determinants for disease progression.


Assuntos
Colite Ulcerativa , Colite , Neoplasias do Colo , Actinas/metabolismo , Colite/complicações , Colite Ulcerativa/complicações , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Neoplasias do Colo/complicações , Proteínas Quinases Associadas com Morte Celular/metabolismo , Efrinas/metabolismo , Humanos , Hiperplasia/complicações , Proteínas de Sinalização YAP
6.
STAR Protoc ; 3(1): 101168, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35199033

RESUMO

Advances in high-throughput sequencing technologies now yield unprecedented volumes of OMICs data with opportunities to conduct systematic data analyses and derive novel biological insights. Here, we provide protocols to perform differential-expressed gene analysis of TCGA and GTEx RNA-Seq data from human cancers, complete integrative GO and network analyses with focus on clinical and survival data, and identify differential correlation of trait-associated biomarkers. For complete details on the use and execution of this protocol, please refer to Chen and MacDonald (2021).


Assuntos
Neoplasias , Biomarcadores Tumorais/genética , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias/diagnóstico , RNA-Seq
7.
iScience ; 24(8): 102831, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34368650

RESUMO

Colon adenocarcinoma is a prevalent malignancy with significant mortality. Hence, the identification of molecular biomarkers with prognostic significance is important for improved treatment and patient outcomes. Clinical traits and RNA-Seq of 551 patient samples in the UCSC Toil Recompute Compendium of The Cancer Genome Atlas TARGET and Genotype Tissue Expression project datasets (primary_site = colon) were used for weighted gene co-expression network analysis to reveal the association between gene networks and cancer cell invasion. One module, containing 151 genes, was significantly correlated with lymphatic invasion, a histopathological feature of higher risk colon cancer. DAPK3 (death-associated protein kinase 3) was identified as the pseudohub of the module. Gene ontology identified gene enrichment related to cytoskeletal organization and apoptotic signaling processes, suggesting modular involvement in tumor cell survival, migration, and epithelial-mesenchymal transformation. Although DAPK3 expression was reduced in patients with colon cancer, high expression of DAPK3 was significantly correlated with greater lymphatic invasion and poor overall survival.

8.
Cell Rep ; 25(6): 1525-1536.e7, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404007

RESUMO

The non-canonical caspase-4 and canonical NLRP3 inflammasomes are both activated by intracellular lipopolysaccharide (LPS), but the crosstalk between these two pathways remains unclear. Shiga toxin 2 (Stx2)/LPS complex, from pathogenic enterohemorrhagic Escherichia coli, activates caspase-4, gasdermin D (GSDMD), and the NLRP3 inflammasome in human THP-1 macrophages, but not mouse macrophages that lack the Stx receptor CD77. Stx2/LPS-mediated IL-1ß secretion and pyroptosis are dependent on mitochondrial reactive oxygen species (ROS) downstream of the non-canonical caspase-4 inflammasome and cleaved GSDMD, which is enriched at the mitochondria. Blockade of caspase-4 activation and ROS generation as well as GSDMD deficiency significantly reduces Stx2/LPS-induced IL-1ß production and pyroptosis. The NLRP3 inflammasome plays a significant role in amplifying Stx2/LPS-induced GSDMD cleavage and pyroptosis, with significant reduction of these responses in NLRP3-deficient THP-1 cells. Together, these data show that Stx2/LPS complex activates the non-canonical inflammasome and mitochondrial ROS upstream of the NLRP3 inflammasome to promote cytokine maturation and pyroptosis.


Assuntos
Caspases Iniciadoras/metabolismo , Inflamassomos/metabolismo , Lipopolissacarídeos/farmacologia , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Toxina Shiga/farmacologia , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Proteínas de Ligação a Fosfato , Piroptose/efeitos dos fármacos
9.
Biochim Biophys Acta Proteins Proteom ; 1866(5-6): 608-616, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29567090

RESUMO

The 20-kDa regulatory light chain of myosin II plays an important role in regulating smooth muscle contractile force. LC20 is phosphorylated canonically by myosin light chain kinase in a Ca2+/calmodulin-dependent manner at S19. The diphosphorylation of LC20 at T18 and S19 has been observed in smooth muscle tissues. Given that the phosphorylation of LC20 is positively correlated with tension development, the molar stoichiometry of LC20 phosphorylation is commonly profiled as a measure of smooth muscle contractility. Herein, we describe a novel multiple reaction monitoring (MRM)-mass spectrometry (MS) approach for the quantification of LC20 phosphorylation at T18 and S19. Unique precursor as well as y- and b-ion transitions were identified for unphosphorylated LC20-(TS), monophosphorylated LC20-(TpS) and diphosphorylated LC20-(pTpS) peptides. The MRM-MS assay could accurately define molar phosphorylation stoichiometries of S19 and T18 over a broad range (i.e., 0-2 mol P/mol LC20). Correlations of the results for two quantification techniques indicate that the MRM-MS assay performs equally to Phos-tag SDS-PAGE for the determination of LC20 phosphorylation stoichiometry in arterial tissue samples. The MRM-MS technique provides a robust alternative to antibody-based detection systems for the quantification of LC20 phosphorylation.


Assuntos
Espectrometria de Massas/métodos , Músculo Liso Vascular/enzimologia , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Fragmentos de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Cauda/irrigação sanguínea , Vasoconstrição , Animais , Artérias/enzimologia , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Masculino , Toxinas Marinhas , Músculo Liso Vascular/efeitos dos fármacos , Oxazóis/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteólise , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...