Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3933, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730243

RESUMO

As a strategy to improve the therapeutic success of chimeric antigen receptor T cells (CART) directed against solid tumors, we here test the combinatorial use of CART and IMSA101, a newly developed stimulator of interferon genes (STING) agonist. In two syngeneic tumor models, improved overall survival is observed when mice are treated with intratumorally administered IMSA101 in addition to intravenous CART infusion. Transcriptomic analyses of CART isolated from tumors show elevated T cell activation, as well as upregulated cytokine pathway signatures, in particular IL-18, in the combination treatment group. Also, higher levels of IL-18 in serum and tumor are detected with IMSA101 treatment. Consistent with this, the use of IL-18 receptor negative CART impair anti-tumor responses in mice receiving combination treatment. In summary, we find that IMSA101 enhances CART function which is facilitated through STING agonist-induced IL-18 secretion.


Assuntos
Interleucina-18 , Proteínas de Membrana , Receptores de Antígenos Quiméricos , Animais , Interleucina-18/metabolismo , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Humanos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Imunoterapia Adotiva/métodos , Feminino , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico
2.
Mol Cell ; 84(1): 120-130, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181755

RESUMO

To survive, all organisms need the ability to accurately recognize and neutralize pathogens. As a result, many of the fundamental strategies that our innate immune system uses to fight infection have deep evolutionary roots. The innate immune sensor cyclic-GMP-AMP synthase (cGAS), an enzyme that plays a critical role in our bodies by sensing and signaling in response to microbial infection, is broadly conserved and has functional homologs in many vertebrates, invertebrates, and even bacteria. In this review, we will provide an overview of cGAS and cGAS-like signaling in eukaryotes before discussing cGAS-like homologs in bacteria.


Assuntos
Bactérias , Evolução Biológica , Animais , Humanos , Bactérias/genética , Eucariotos , Sistema Imunitário , Nucleotidiltransferases/genética
3.
Mil Med ; 188(Suppl 6): 536-544, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37948275

RESUMO

INTRODUCTION: Experiences by service members in recent conflicts and training environments illuminate concerns about the possible effects of blast overpressure (BOP) exposure on brain health. Section 734 of the National Defense Authorization Act for Fiscal Year (FY) 2018 (Public Law 115-91) requires that the Secretary of Defense conducts a longitudinal medical study on blast pressure exposure of members of the Armed Forces during combat and training, and the Assistant Secretary of Defense for Health Affairs was assigned responsibility for fulfilling requirements. The study's goal is to improve DoD's understanding of the impact of BOP exposure from weapon systems on service members' brain health and inform policy for risk mitigation, unit readiness, and health care decisions. This article focuses on the activities of the Weapon Systems Line of Inquiry (LOI) and the development of a prototype BOP Tool. MATERIALS AND METHODS: The DoD established the Section 734 Workgroup, which developed a program structure with five LOIs. The Weapon Systems LOI coordinated, collated, and analyzed information on BOP resulting from heavy weapons and blast events to inform strategies, and accounted for emerging research on health effects and performance. Ongoing research was leveraged to develop a BOP Tool as a standalone module and for integration into the Range Managers Toolkit. RESULTS: The effort identified opportunities for the DoD to improve the clarity of communications about BOP exposure, risk, and safety; establish methods to leverage emerging research; and develop a prototype BOP Tool to predict exposure loads when firing heavy weapons in training. CONCLUSIONS: It is recommended that the DoD revises requirements and policy to improve and standardize safety guidance throughout research, development, testing, and evaluation; acquisition; and training. The validated BOP Tool allows users to generate a scenario to predict BOP exposure and allows service members to modify them during planning for safer training.


Assuntos
Explosões , Corpo Humano , Humanos , Encéfalo
4.
bioRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945615

RESUMO

Interspecies chimera formation with human pluripotent stem cells (PSCs) holds great promise to generate humanized animal models and provide donor organs for transplant. However, the approach is currently limited by low levels of human cells ultimately represented in chimeric embryos. Different strategies have been developed to improve chimerism by genetically editing donor human PSCs. To date, however, it remains unexplored if human chimerism can be enhanced in animals through modifying the host embryos. Leveraging the interspecies PSC competition model, here we discovered retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling, an RNA sensor, in "winner" cells plays an important role in the competitive interactions between co-cultured mouse and human PSCs. We found that genetic inactivation of Ddx58/Ifih1-Mavs-Irf7 axis compromised the "winner" status of mouse PSCs and their ability to outcompete PSCs from evolutionarily distant species during co-culture. Furthermore, by using Mavs-deficient mouse embryos we substantially improved unmodified donor human cell survival. Comparative transcriptome analyses based on species-specific sequences suggest contact-dependent human-to-mouse transfer of RNAs likely plays a part in mediating the cross-species interactions. Taken together, these findings establish a previously unrecognized role of RNA sensing and innate immunity in "winner" cells during cell competition and provides a proof-of-concept for modifying host embryos, rather than donor PSCs, to enhance interspecies chimerism.

5.
Nature ; 616(7956): 326-331, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36848932

RESUMO

cGAS is an evolutionarily conserved enzyme that has a pivotal role in immune defence against infection1-3. In vertebrate animals, cGAS is activated by DNA to produce cyclic GMP-AMP (cGAMP)4,5, which leads to the expression of antimicrobial genes6,7. In bacteria, cyclic dinucleotide (CDN)-based anti-phage signalling systems (CBASS) have been discovered8-11. These systems are composed of cGAS-like enzymes and various effector proteins that kill bacteria on phage infection, thereby stopping phage spread. Of the CBASS systems reported, approximately 39% contain Cap2 and Cap3, which encode proteins with homology to ubiquitin conjugating (E1/E2) and deconjugating enzymes, respectively8,12. Although these proteins are required to prevent infection of some bacteriophages8, the mechanism by which the enzymatic activities exert an anti-phage effect is unknown. Here we show that Cap2 forms a thioester bond with the C-terminal glycine of cGAS and promotes conjugation of cGAS to target proteins in a process that resembles ubiquitin conjugation. The covalent conjugation of cGAS increases the production of cGAMP. Using a genetic screen, we found that the phage protein Vs.4 antagonized cGAS signalling by binding tightly to cGAMP (dissociation constant of approximately 30 nM) and sequestering it. A crystal structure of Vs.4 bound to cGAMP showed that Vs.4 formed a hexamer that was bound to three molecules of cGAMP. These results reveal a ubiquitin-like conjugation mechanism that regulates cGAS activity in bacteria and illustrates an arms race between bacteria and viruses through controlling CDN levels.


Assuntos
Bactérias , Proteínas de Bactérias , Bacteriófagos , Nucleotidiltransferases , Ubiquitina , Animais , Bactérias/enzimologia , Bactérias/imunologia , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/imunologia , Nucleotídeos Cíclicos/biossíntese , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Ubiquitina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Virais/metabolismo , Interações entre Hospedeiro e Microrganismos
6.
Front Cell Neurosci ; 17: 1007062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814869

RESUMO

Background: Blast induced Traumatic Brain Injury (bTBI) has become a signature casualty of military operations. Recently, military medics observed neurocognitive deficits in servicemen exposed to repeated low level blast (LLB) waves during military heavy weapons training. In spite of significant clinical and preclinical TBI research, current understanding of injury mechanisms and short- and long-term outcomes is limited. Mathematical models of bTBI biomechanics and mechanobiology of sensitive neuro-structures such as synapses may help in better understanding of injury mechanisms and in the development of improved diagnostics and neuroprotective strategies. Methods and results: In this work, we formulated a model of a single synaptic structure integrating the dynamics of the synaptic cell adhesion molecules (CAMs) with the deformation mechanics of the synaptic cleft. The model can resolve time scales ranging from milliseconds during the hyperacute phase of mechanical loading to minutes-hours acute/chronic phase of injury progression/repair. The model was used to simulate the synaptic injury responses caused by repeated blast loads. Conclusion: Our simulations demonstrated the importance of the number of exposures compared to the duration of recovery period between repeated loads on the synaptic injury responses. The paper recognizes current limitations of the model and identifies potential improvements.

7.
ACS Cent Sci ; 9(12): 2298-2305, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38161369

RESUMO

cGAMP is a signaling molecule produced by the cGAS-DNA complex to establish antimicrobial and antitumor immunity through STING. Whereas STING activation holds potential as a new strategy to treat cancer, cGAMP is generally considered unsuitable for in vivo use because of the rapid cleavage of its phosphodiester linkages and the limited cellular uptake under physiological conditions. Consequently, phosphorothioation and fluorination are commonly used to improve the metabolic stability and permeability of cGAMP and its synthetic analogues. We now show that methylation of the 3'-hydroxyl group of cGAMP also confers metabolic stability and that acylation of the 2'-hydroxyl group can be achieved directly and selectively to enable receptor-mediated intracellular delivery. Unlike phosphorothioation and fluorination, these modifications do not create a new stereogenic center and do not require laborious building block synthesis. As such, orthogonal hydroxyl functionalization is a simple solution to issues associated with the in vivo use of cGAMP.

8.
Proc Natl Acad Sci U S A ; 119(49): e2214278119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442099

RESUMO

The cGAS-STING pathway is essential for immune defense against microbial pathogens and malignant cells; as such, STING is an attractive target for cancer immunotherapy. However, systemic administration of STING agonists poses safety issues while intratumoral injection is limited by tumor accessibility. Here, we generated antibody-drug conjugates (ADCs) by conjugating a STING agonist through a cleavable linker to antibodies targeting tumor cells. Systemic administration of these ADCs was well tolerated and exhibited potent antitumor efficacy in syngeneic mouse tumor models. The STING ADC further synergized with an anti-PD-L1 antibody to achieve superior antitumor efficacy. The STING ADC promoted multiple aspects of innate and adaptive antitumor immune responses, including activation of dendritic cells, T cells, natural killer cells and natural killer T cells, as well as promotion of M2 to M1 polarization of tumor-associated macrophages. These results provided the proof of concept for clinical development of the STING ADCs.


Assuntos
Imunoconjugados , Neoplasias , Animais , Camundongos , Imunoterapia , Fatores Imunológicos , Neoplasias/terapia , Macrófagos Associados a Tumor
9.
Sci Immunol ; 7(76): eabp9962, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35926067

RESUMO

The rapid evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), such as the Omicron variants that are highly transmissible and immune evasive, underscores the need to develop therapeutic antibodies with broad neutralizing activities. Here, we used the LIBRA-seq technology, which identified SARS-CoV-2-specific B cells via DNA barcoding and subsequently single-cell sequenced BCRs, to identify an antibody, SW186, which could neutralize major SARS-CoV-2 variants of concern, including Beta, Delta, and Omicron, as well as SARS-CoV-1. The cryo-EM structure of SW186 bound to the receptor binding domain (RBD) of the viral spike protein showed that SW186 interacted with an epitope of the RBD that is not at the interface of its binding to the ACE2 receptor but is highly conserved among SARS coronaviruses. This epitope encompasses a glycosylation site (N343) of the viral spike protein. Administration of SW186 in mice after they were infected with SARS-CoV-2 Alpha, Beta, or Delta variants reduced the viral loads in the lung. These results demonstrated that SW186 neutralizes diverse SARS coronaviruses by binding to a conserved RBD epitope, which could serve as a target for further antibody development.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Glicoproteína da Espícula de Coronavírus , Epitopos , Enzima de Conversão de Angiotensina 2 , Anticorpos Antivirais , Peptidil Dipeptidase A/metabolismo , Receptores Virais/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(25): e2206046119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35704758

RESUMO

Nuclear speckles are non-membrane-bound organelles known as storage sites for messenger RNA (mRNA) processing and splicing factors. More recently, nuclear speckles have also been implicated in splicing and export of a subset of mRNAs, including the influenza virus M mRNA that encodes proteins required for viral entry, trafficking, and budding. However, little is known about how nuclear speckles are assembled or regulated. Here, we uncovered a role for the cellular protein kinase TAO2 as a constituent of nuclear speckles and as a factor required for the integrity of these nuclear bodies and for their functions in pre-mRNA splicing and trafficking. We found that a nuclear pool of TAO2 is localized at nuclear speckles and interacts with nuclear speckle factors involved in RNA splicing and nuclear export, including SRSF1 and Aly/Ref. Depletion of TAO2 or inhibition of its kinase activity disrupts nuclear speckle structure, decreasing the levels of several proteins involved in nuclear speckle assembly and splicing, including SC35 and SON. Consequently, splicing and nuclear export of influenza virus M mRNA were severely compromised and caused a disruption in the virus life cycle. In fact, low levels of TAO2 led to a decrease in viral protein levels and inhibited viral replication. Additionally, depletion or inhibition of TAO2 resulted in abnormal expression of a subset of mRNAs with key roles in viral replication and immunity. Together, these findings uncovered a function of TAO2 in nuclear speckle formation and function and revealed host requirements and vulnerabilities for influenza infection.


Assuntos
Núcleo Celular , Salpicos Nucleares , Proteínas Quinases , Splicing de RNA , Transporte Ativo do Núcleo Celular , Núcleo Celular/enzimologia , Células HeLa , Humanos , Proteínas Quinases/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina/genética
11.
Cancer Immunol Res ; 10(7): 829-843, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561311

RESUMO

The MYC oncogene is frequently amplified in triple-negative breast cancer (TNBC). Here, we show that MYC suppression induces immune-related hallmark gene set expression and tumor-infiltrating T cells in MYC-hyperactivated TNBCs. Mechanistically, MYC repressed stimulator of interferon genes (STING) expression via direct binding to the STING1 enhancer region, resulting in downregulation of the T-cell chemokines CCL5, CXCL10, and CXCL11. In primary and metastatic TNBC cohorts, tumors with high MYC expression or activity exhibited low STING expression. Using a CRISPR-mediated enhancer perturbation approach, we demonstrated that MYC-driven immune evasion is mediated by STING repression. STING repression induced resistance to PD-L1 blockade in mouse models of TNBC. Finally, a small-molecule inhibitor of MYC combined with PD-L1 blockade elicited a durable response in immune-cold TNBC with high MYC expression, suggesting a strategy to restore PD-L1 inhibitor sensitivity in MYC-overexpressing TNBC.


Assuntos
Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias de Mama Triplo Negativas , Animais , Antígeno B7-H1 , Linhagem Celular Tumoral , Repressão Epigenética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Evasão da Resposta Imune , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
12.
Mol Cell ; 82(8): 1390-1397, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35452608

RESUMO

We asked experts from different fields-from genome maintenance and proteostasis to organelle degradation via ubiquitin and autophagy-"What does quality control mean to you?" Despite their diverse backgrounds, they converge on and discuss the importance of continuous quality control at all levels, context, communication, timing, decisions on whether to repair or remove, and the significance of dysregulated quality control in disease.


Assuntos
Autofagia , Ubiquitina , Proteostase , Ubiquitina/genética , Ubiquitina/metabolismo
13.
Mol Cell ; 82(13): 2415-2426.e5, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35477005

RESUMO

The NF-κB essential modulator (NEMO) is a regulatory subunit of the IκB kinase (IKK) complex that phosphorylates the NF-κB inhibitors IκBs. NEMO mediates IKK activation by binding to polyubiquitin chains (polyUb). Here, we show that Lys63(K63)-linked or linear polyUb binding to NEMO robustly induced the formation of liquid-like droplets in which IKK was activated. This liquid phase separation of NEMO was driven by multivalent interactions between NEMO and polyUb. Both the NEMO ubiquitin-binding (NUB) domain and the zinc-finger (ZF) domain of NEMO mediated binding to polyUb and contributed to NEMO phase separation and IKK activation in cells. Moreover, NEMO mutations associated with human immunodeficiency impaired its phase separation. These results demonstrate that polyUb activates IKK and NF-κB signaling by promoting the phase separation of NEMO.


Assuntos
NF-kappa B , Poliubiquitina , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Poliubiquitina/genética , Transdução de Sinais , Ubiquitina/metabolismo
14.
J Exp Med ; 219(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34901991

RESUMO

Defective DNA clearance in DNase II-/- mice leads to lethal inflammatory diseases that can be rescued by deleting cGAS or STING, but the role of distinct signaling pathways downstream of STING in the disease manifestation is not known. We found that the STING S365A mutation, which abrogates IRF3 binding and type I interferon induction, rescued the embryonic lethality of DNase II-/- mice. However, the STING S365A mutant retains the ability to recruit TBK1 and activate NF-κB, and DNase II-/-STING-S365A mice exhibited severe polyarthritis, which was alleviated by neutralizing antibodies against TNF-α or IL-6 receptor. In contrast, the STING L373A mutation or C-terminal tail truncation, which disrupts TBK1 binding and therefore prevents activation of both IRF3 and NF-κB, completely rescued the phenotypes of DNase II-/- mice. These results demonstrate that TBK1 recruitment to STING mediates autoinflammatory arthritis independently of type I interferons. Inhibiting TBK1 binding to STING may be a therapeutic strategy for certain autoinflammatory diseases instigated by self-DNA.


Assuntos
Artrite/metabolismo , DNA/metabolismo , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Artrite/genética , DNA/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Inflamação/genética , Fator Regulador 3 de Interferon/metabolismo , Interleucina-6/sangue , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , NF-kappa B/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074794

RESUMO

The DNA-sensing enzyme cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) regulates inflammation and immune defense against pathogens and malignant cells. Although cGAS has been shown to exert antitumor effects in several mouse models harboring transplanted tumor cell lines, its role in tumors arising from endogenous tissues remains unknown. Here, we show that deletion of cGAS in mice exacerbated chemical-induced colitis and colitis-associated colon cancer (CAC). Interestingly, mice lacking cGAS were more susceptible to CAC than those lacking stimulator of interferon genes (STING) or type I interferon receptor under the same conditions. cGAS but not STING is highly expressed in intestinal stem cells. cGAS deficiency led to intestinal stem cell loss and compromised intestinal barrier integrity upon dextran sodium sulfate-induced acute injury. Loss of cGAS exacerbated inflammation, led to activation of STAT3, and accelerated proliferation of intestinal epithelial cells during CAC development. Mice lacking cGAS also accumulated myeloid-derived suppressive cells within the tumor, displayed enhanced Th17 differentiation, but reduced interleukin (IL)-10 production. These results indicate that cGAS plays an important role in controlling CAC development by defending the integrity of the intestinal mucosa.


Assuntos
Neoplasias do Colo/enzimologia , Mucosa Intestinal/enzimologia , Proteínas de Neoplasias/metabolismo , Nucleotidiltransferases/metabolismo , Animais , Neoplasias do Colo/genética , Camundongos , Camundongos Knockout , Células Supressoras Mieloides/enzimologia , Proteínas de Neoplasias/genética , Nucleotidiltransferases/genética , Células-Tronco/enzimologia , Células Th17/enzimologia
16.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785602

RESUMO

The induction of type I interferons through the transcription factor interferon regulatory factor 3 (IRF3) is considered a major outcome of stimulator of interferon genes (STING) activation that drives immune responses against DNA viruses and tumors. However, STING activation can also trigger other downstream pathways such as nuclear factor κB (NF-κB) signaling and autophagy, and the roles of interferon (IFN)-independent functions of STING in infectious diseases or cancer are not well understood. Here, we generated a STING mouse strain with a mutation (S365A) that disrupts IRF3 binding and therefore type I interferon induction but not NF-κB activation or autophagy induction. We also generated STING mice with mutations that disrupt the recruitment of TANK-binding kinase 1 (TBK1), which is important for both IRF3 and NF-κB activation but not autophagy induction (L373A or ∆CTT, which lacks the C-terminal tail). The STING-S365A mutant mice, but not L373A or ∆CTT mice, were still resistant to herpes simplex virus 1 (HSV-1) infections and mounted an antitumor response after cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) treatment despite the absence of STING-induced interferons. These results demonstrate that STING can function independently of type I interferons and autophagy, and that TBK1 recruitment to STING is essential for antiviral and antitumor immunity.


Assuntos
Herpes Simples/imunologia , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Autofagia , Linhagem Celular Tumoral , Células Cultivadas , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , NF-kappa B/metabolismo
17.
Science ; 371(6535)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33542149

RESUMO

The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) detects microbial and self-DNA in the cytosol to activate immune and inflammatory programs. cGAS also associates with chromatin, especially after nuclear envelope breakdown when cells enter mitosis. How cGAS is regulated during cell cycle transition is not clear. Here, we found direct biochemical evidence that cGAS activity was selectively suppressed during mitosis in human cell lines and uncovered two parallel mechanisms underlying this suppression. First, cGAS was hyperphosphorylated at the N terminus by mitotic kinases, including Aurora kinase B. The N terminus of cGAS was critical for sensing nuclear chromatin but not mitochondrial DNA. Chromatin sensing was blocked by hyperphosphorylation. Second, oligomerization of chromatin-bound cGAS, which is required for its activation, was prevented. Together, these mechanisms ensure that cGAS is inactive when associated with chromatin during mitosis, which may help to prevent autoimmune reaction.


Assuntos
Cromatina/metabolismo , Mitose , Nucleotidiltransferases/metabolismo , Aurora Quinase B/metabolismo , Ciclo Celular , Linhagem Celular , DNA/metabolismo , DNA Mitocondrial/metabolismo , Ativação Enzimática , Humanos , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/química , Fosforilação , Multimerização Proteica
18.
Cancer Cell ; 39(1): 109-121.e5, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33338427

RESUMO

Tumors with defective mismatch repair (dMMR) are responsive to immunotherapy because of dMMR-induced neoantigens and activation of the cGAS-STING pathway. While neoantigens result from the hypermutable nature of dMMR, it is unknown how dMMR activates the cGAS-STING pathway. We show here that loss of the MutLα subunit MLH1, whose defect is responsible for ~50% of dMMR cancers, results in loss of MutLα-specific regulation of exonuclease 1 (Exo1) during DNA repair. This leads to unrestrained DNA excision by Exo1, which causes increased single-strand DNA formation, RPA exhaustion, DNA breaks, and aberrant DNA repair intermediates. Ultimately, this generates chromosomal abnormalities and the release of nuclear DNA into the cytoplasm, activating the cGAS-STING pathway. In this study, we discovered a hitherto unknown MMR mechanism that modulates genome stability and has implications for cancer therapy.


Assuntos
Aberrações Cromossômicas , Enzimas Reparadoras do DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Proteína 1 Homóloga a MutL/deficiência , Neoplasias/genética , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Simples , Reparo de Erro de Pareamento de DNA , Reparo do DNA , DNA de Cadeia Simples/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteína 1 Homóloga a MutL/metabolismo , Neoplasias/metabolismo , Nucleotidiltransferases/metabolismo , Proteína de Replicação A/metabolismo
19.
Nature ; 586(7829): 363-364, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32989308
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...