Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 451: 139526, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729041

RESUMO

In order to valorise winemaking grape stalks, subcritical water extraction at 160 and 180 °C has been carried out to obtain phenolic-rich extracts useful for developing active food packaging materials. Red (R) and white (W) varieties (from Requena, Spain) were used, and thus, four kinds of extracts were obtained. These were characterised as to their composition, thermal stability and antioxidant and antibacterial activity. The extracts were incorporated at 6 wt% into polylactic acid (PLA) films and their effect on the optical and barrier properties of the films and their protective effect against sunflower oil oxidation was analysed. Carbohydrates were the major compounds (25-38%) in the extracts that contained 3.5-6.6% of phenolic compounds, the R extracts being the richest, with higher radical scavenging capacity. Every extract exhibited antibacterial effect against Escherichia coli and Listeria innocua, while PLA films with extracts preserved sunflower oil against oxidation.


Assuntos
Antibacterianos , Antioxidantes , Escherichia coli , Embalagem de Alimentos , Listeria , Extratos Vegetais , Vitis , Embalagem de Alimentos/instrumentação , Vitis/química , Antioxidantes/química , Antioxidantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Listeria/efeitos dos fármacos , Listeria/crescimento & desenvolvimento
2.
Foods ; 13(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540940

RESUMO

Polyhydroxyalkanoates (PHAs) are high-value biodegradable polyesters with thermoplastic properties used in the manufacturing of different products such as packaging films. PHAs have gained much attention from researchers and industry because of their biobased nature and appropriate features, similar to conventional synthetic plastics. This review aims to discuss some of the recent solutions to challenges associated with PHA production. The implementation of a cost-effective process is presented by following different strategies, such as the use of inexpensive carbon sources, the selection of high-producing microorganisms, and the functionalization of the final materials to make them suitable for food packaging applications, among others. Research efforts are needed to improve the economic viability of PHA production at a large scale. Haloferax mediterranei is a promising producer of PHAs due to its ability to grow in non-sterile conditions and the possibility of using seawater to prepare the growth medium. Additionally, downstream processing for PHA extraction can be simplified by treating the H. mediterranei cells with pure water. Further research should focus on the optimization of the recycling conditions for the effluents and on the economic viability of the side streams reutilization and desalinization as an integrated part of PHA biotechnological production.

3.
Polymers (Basel) ; 15(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959902

RESUMO

PHBV films incorporating 3, 6 and 9% ferulic acid (FA) or p-coumaric acid (PCA) were obtained by melt blending and compression moulding. The films' microstructures and thermal behaviours were analysed as well as their mechanical, optical and barrier properties. The overall and specific migration of the materials in different food simulants was also characterised. FA was homogeneously mixed with the polymer, whereas PCA was mainly dispersed as fine particles in the PHBV matrices due to its higher melting point. These structural features promoted differences in the physical properties of the films depending on the compound concentration. As the concentration of both compounds rose, the barrier capacity of the films to oxygen, and to a lesser extent water vapour, was enhanced. While FA promoted the extensibility of the films, 9% PCA enhanced their brittleness. Both compounds affected the crystallisation pattern of the polymer, promoting smaller crystalline formations and a slight decrease in crystallinity. Although the overall migration of every film formulation was lower than the overall migration limit (OML), the release of active compounds was dependent on the food simulant; almost total release was noted in ethanol containing simulants but was more limited in aqueous systems. Therefore, these films could be used as food contact materials, contributing to extending the food's shelf life.

4.
Foods ; 12(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37893652

RESUMO

Almond skin (AS) is an agro-industrial residue from almond processing that has a high potential for valorisation. In this study, subcritical water extraction (SWE) was applied at two temperatures (160 and 180 °C) to obtain phenolic-rich extracts (water-soluble fraction) and cellulose fibres (insoluble fraction) from AS. The extraction conditions affected the composition and properties of both valorised fractions. The dry extracts obtained at 180 °C were richer in phenolics (161 vs. 101 mg GAE. g-1 defatted almond skin (DAS)), with greater antioxidant potential (1.063 vs. 1.490 mg DAS.mg-1 DPPH) and showed greater antibacterial effect (lower MIC values) against L. innocua (34 vs. 90 mg·mL-1) and E. coli (48 vs. 90 mg·mL-1) than those obtained at 160 °C, despite the lower total solid yield (21 vs. 29%) obtained in the SWE process. The purification of cellulose from the SWE residues, using hydrogen peroxide (H2O2), revealed that AS is not a good source of cellulose material since the bleached fractions showed low yields (20-21%) and low cellulose purity (40-50%), even after four bleaching cycles (1 h) at pH 12 and 8% H2O2. Nevertheless, the application of a green, scalable, and toxic solvent-free SWE process was highly useful for obtaining AS bioactive extracts for different food, cosmetic, or pharmaceutical applications.

5.
Foods ; 12(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37761206

RESUMO

This study investigated the potential uses of discarded mango peel and seed parts by analyzing their water sorption behavior, hydration kinetics, and stability when converted into extract powders at pH 3 and 10. The results revealed that peel extracts had a higher water adsorption capacity compared with seed extracts due to differences in their composition. Peel extracts were primarily composed of carbohydrates (approximately 75%) with a low protein content, while seed extracts contained fewer carbohydrates (less than 30%) but higher levels of proteins (more than 30%) and lipids. The critical water content for maintaining the glassy state of peel extract powders during storage was found to be 0.025 and 0.032 g of water/g for extracts obtained at pH 3 and 10, respectively. In contrast, the Tg values of seed extracts remained relatively unchanged across different water content levels, suggesting that proteins and lipids inhibited the water's plasticizing effect in the solid matrix. These findings indicate that both mango waste fractions exhibit distinct hygroscopic behaviors, necessitating different approaches to processing and utilization. These extracts hold potential applications for various food products such as beverages, gels, sauces, or emulsions, contributing to the reduction in waste and the creation of value-added products from mango residues.

6.
Carbohydr Polym ; 312: 120805, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059537

RESUMO

Cellulose aerogels were obtained from purified rice straw cellulose fibres (CF) by applying different extraction methods: the conventional alkaline treatment (ALK) and alternative aqueous extraction based on the ultrasound combined with reflux heating (USHT) and subcritical water extraction (SWE) (160 and 180 °C). The composition and properties of the CFs were significantly affected by the purification process. The USHT treatment was as efficient as the ALK at eliminating the silica content, but the fibres maintained a notable ratio of hemicellulose (∼16 %). The SWE treatments were not so effective at removing silica (15 %) but greatly promoted the selective extraction of hemicellulose, especially at 180 °C (3 %). The CF compositional differences affected their hydrogel formation capacity and the properties of aerogels. A higher hemicellulose content in the CF led to better-structured hydrogels with better water-holding capacity, while the aerogels exhibited a more cohesive structure with thicker walls, higher porosity (99 %) and water vapour sorption capacity, but lower liquid water retention capacity (0.2 g/g). The residual silica content also interfered with the hydrogel and aerogel formation, giving rise to less structured hydrogels and more fibrous aerogels, with lower porosity (97-98 %).


Assuntos
Celulose , Oryza , Celulose/química , Oryza/química , Hidrogéis/química , Dióxido de Silício/química , Receptores Proteína Tirosina Quinases
7.
Foods ; 12(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36673467

RESUMO

The present work evaluates the food packaging performance of previously developed films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced with atomized microfibrillated cellulose (MFC) compatibilized by a reactive melt-mixing process. To this end, the novel green composite films were originally applied herein as lids in aluminum trays to preserve two dissimilar types of fatty foods, namely minced pork meat and sunflower oil. Results indicated that the PHBV/MFC films effectively preserved the physicochemical and microbiological quality of pork meat for one week of storage at 5 °C. In particular, the compatibilized green composite lid film yielded the lowest weight loss and highest oxidative stability, showing values of 0.935% and 0.78 malonaldehyde (MDA)/kg. Moreover, none of the packaged meat samples exceeded the acceptable Total Aerobial Count (TAC) level of 5 logs colony-forming units (CFU)/g due to the improved barrier properties of the lids. Furthermore, the green composite films successfully prevented sunflower oil oxidation in accelerated oxidative storage conditions for 21 days. Similarly, the compatibilized PHBV/MFC lid film led to the lowest peroxide value (PV) and conjugated diene and triene contents, with respective values of 19.5 meq O2/kg and 2.50 and 1.44 g/100 mL. Finally, the migration of the newly developed PHBV-based films was assessed using two food simulants, proving to be safe since their overall migration levels were in the 1-3 mg/dm2 range and, thus, below the maximum level established by legislation.

8.
Food Chem ; 405(Pt B): 134990, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36417804

RESUMO

Bilayers from thermoplastic corn starch (TPS) and PLA were obtained, incorporating or not rice straw (RS) valorised fractions: active extract (es) into PLA and cellulose fibres (cf) into TPS films. The films were obtained by thermoprocessing while the bilayers were obtained by thermocompression of the different monolayers (TPS-PLA, TPScf-PLA, TPS-PLAes and TPScf-PLAes). TPS conferred oxygen barrier capacity to the laminates, which was improved by the cf incorporation. The extract slightly reduced the PLA resistance but improved their oxygen barrier capacity. The tensile and barrier properties of the bilayers revealed changes in the performance of each layer associated with the interlayer compound migration. The TPScf-PLAes bags exhibited noticeable antioxidant capacity when used in meat packaging and reduced microbial counts throughout cold storage. Therefore, these bilayers have considerable potential to extend the shelf-life of meat samples, preserving their quality and safety for longer, while using RS fractions permits its valorisation.


Assuntos
Carne , Amido , Criopreservação , Celulose , Extratos Vegetais , Oxigênio , Poliésteres
9.
Food Chem ; 400: 134073, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36075168

RESUMO

Antioxidant aqueous rice straw (RS) extract was obtained by a combined ultrasound-reflux heating process and cellulose fibres (CF) were purified by bleaching the extraction residue. Both fractions were incorporated into corn starch to obtain films by melt blending and compression moulding. CF (at 3 % wt.) greatly increased the elastic modulus (by 200 %) and tensile strength at break (by 100 %) while reducing film stretchability. Films with CF exhibited the greatest barrier capacity to water vapour and oxygen. The incorporation of RS extract (at 4, 6 and 8 % wt.) plasticised the film's amorphous phase, but also reinforced the matrix to a certain extent. The active films showed a high degree of UV absorption and DPPH radical scavenging capacity. Mono-dose sunflower oil bags were obtained with films with CF and RS extracts that, to a great extent, prevent oil oxidation in an accelerated oxidative test under UV radiation throughout 50 days.


Assuntos
Oryza , Amido , Antioxidantes/química , Celulose/química , Oryza/química , Oxigênio/química , Permeabilidade , Extratos Vegetais/química , Amido/química , Vapor , Óleo de Girassol , Resistência à Tração
10.
Foods ; 12(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38231874

RESUMO

Food preservation is a set of procedures and resources aimed at blocking the action of external and internal agents that may alter the original characteristics of food [...].

11.
Membranes (Basel) ; 12(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36295734

RESUMO

Bilayer films of cassava starch-based (with 10% gellan gum) and polylactic (PLA): Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) polyester blend (with 75% PLA) monolayers were obtained by melt-blending and compression-molding, and the subsequent thermocompressing of both monolayers. Ferulic acid (FA) was incorporated into the polyester sheet by spraying and drying. Films were characterized in terms of their microstructure and functional properties throughout two months of storage at 25 °C and 53% relative humidity. The laminates exhibited improved tensile and barrier properties compared to the respective monolayers, which makes them more adequate for food packaging purposes. Surface incorporation of ferulic acid did not significantly modify the barrier and mechanical properties of the films while providing them with antioxidant and antibacterial capacity when applied in aqueous systems, where a complete release of active compounds occurred. The physical properties of the bilayers and layer thermo-sealing were stable throughout storage. Likewise, the antioxidant and antimicrobial active properties were preserved throughout storage. Therefore, these active bilayers represent a sustainable packaging alternative to non-biodegradable, non-recyclable synthetic laminates for food packaging purposes, which could extend the shelf-life of food due to their antioxidant and antibacterial properties.

12.
Compr Rev Food Sci Food Saf ; 21(5): 3910-3930, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35912666

RESUMO

The development of new materials for food packaging applications is necessary to reduce the excessive use of disposable plastics and their environmental impact. Biodegradable polymers represent an alternative means of mitigating the problem. To add value to biodegradable materials and to enhance food preservation, the incorporation of active compounds into the polymer matrix is an affordable strategy. Phenolic acids are plant metabolites that can be found in multiple plant extracts and exhibit antioxidant and antimicrobial properties. Compared with other natural active compounds, such as essential oils, phenolic acids do not present a high sensorial impact while exhibiting similar minimal inhibitory concentrations against different bacteria. This study summarizes and discusses recent studies about the potential of both phenolic acids/plant extracts and biodegradable polymers as active food packaging materials, their properties, interactions, and the factors that could affect their antimicrobial efficiency. The molecular structure of phenolic acids greatly affects their potential antioxidant and antimicrobial capacity, as well as their specific interactions with polymer matrices and food substrates. These interactions, in turn, can lead to plasticizing or cross-linking effects. In the present study, the antioxidant and antimicrobial properties of different biodegradable films with phenolic acids have been described, as well as the main factors affecting the active properties of these films as useful materials for active packaging development. More studies applying these active materials in real foods are required.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Antibacterianos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Embalagem de Alimentos , Hidroxibenzoatos , Extratos Vegetais/química , Plásticos , Polímeros/química
13.
Food Chem ; 385: 132650, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35306239

RESUMO

Starch (S) films containing gellan gum (90:10) and polyester (P) blend films (PLA:PHBV, 75:25) with and without ferulic, p-coumaric or protocatechuic acid at 2% (w/w) were obtained by melt-blending and compression moulding for the purposes of obtaining SP bilayers by thermo-compressing both monolayers together. These were characterised as to their mechanical and barrier properties and as to their performance as packaging materials for pork meat slices. The incorporation of phenolic acids promoted the water vapour and oxygen barrier capacity of bilayers while reducing their stiffness and resistance to break, mainly in the case of protocatechuic acid. Phenolic acids significantly improved the antioxidant capacity of the bilayer films, reducing the lipid oxidation of packaged meat during storage. Phenolic acid loaded bilayers also reduced the microbial counts of meat, mainly for lactic acid bacteria. These effects positively affected the development of the sample pH and colour parameters throughout storage. Active starch-polyester bilayer films exhibited great potential as a means of extending the shelf-life and improving the quality preservation of pork meat.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Embalagem de Alimentos , Hidroxibenzoatos , Carne/microbiologia , Poliésteres/química , Amido/química , Suínos
14.
Foods ; 11(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35053974

RESUMO

Films based on a 75:25 polylactic acid (PLA) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) blend, containing 2% (w/w) of different phenolic acids (ferulic, p-coumaric or protocatechuic acid), and plasticised with 15 wt. % polyethylene glycol (PEG 1000), were obtained by melt blending and compression moulding. The disintegration and biodegradation of the film under thermophilic composting conditions was studied throughout 35 and 45 days, respectively, in order to analyse the effect of the incorporation of the antimicrobial phenolic acids into the films. Sample mass loss, thermo-degradation behaviour and visual appearance were analysed at different times of the composting period. No effect of phenolic acids was observed on the film disintegration pattern, and the films were completely disintegrated at the end of the composting period. The biodegradation analysis through the CO2 measurements revealed that PLA-PHBV blend films without phenolic acids, and with ferulic acid, completely biodegraded after 20 composting days, while p-coumaric and protocatechuic slightly retarded full biodegradation (21 and 26 days, respectively). Phenolic acids mainly extended the induction period, especially protocatechuic acid. PLA-PHBV blend films with potential antimicrobial activity could be used to preserve fresh foodstuff susceptible to microbial spoilage, with their biodegradation under composting conditions being ensured.

15.
Food Chem ; 375: 131861, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942501

RESUMO

Multilayer materials with good interlayer-adhesion were obtained by thermocompression for laminating an internal poly (vinyl alcohol) (PVA) layer with two external poly (lactic acid) (PLA) layers. Carvacrol or ferulic acid were incorporated into the PVA sheet to obtain active materials. The multilayer films were characterised as to their microstructure, thermal behaviour, tensile and barrier properties. Furthermore, the antimicrobial capacity of the materials was analysed in packaged beef meat samples for 17 days at 5 °C. The laminates exhibited tensile properties close to those of the PLA films, but with enhanced stretchability. Compared to the monolayers, the barrier capacity of multilayers was much improved by combining polyester and PVA layers, which provide the laminate with water vapour and oxygen barrier capacity, respectively. Active multilayers were effective at controlling microbial growth in beef meat during cold storage. Therefore, the materials developed were functionally adequate for food packaging purposes and successfully promoted the meat preservation.


Assuntos
Anti-Infecciosos , Embalagem de Alimentos , Animais , Antibacterianos , Bovinos , Poliésteres , Álcool de Polivinil
16.
Foods ; 10(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205937

RESUMO

The environmental problem generated by the massive consumption of plastics makes necessary the developing of biodegradable antimicrobial materials that can extend food shelf-life without having a negative impact on the environment. The current situation regarding the availability of biodegradable food packaging materials has been analysed, as well as different studies where antimicrobial compounds have been incorporated into the polymer matrix to control the growth of pathogenic or spoilage bacteria. Thus, the antimicrobial activity of active films based on different biodegradable polymers and antimicrobial compounds has been discussed. Likewise, relevant information on biodegradation studies carried out with different biopolymers in different environments (compost, soil, aquatic), and the effect of some antimicrobials on this behavior, are reviewed. In most of the studies, no relevant effect of the incorporated antimicrobials on the degradation of the polymer were observed, but some antimicrobials can delay the process. The changes in biodegradation pattern due to the presence of the antimicrobial are attributed to its influence on the microorganism population responsible for the process. More studies are required to know the specific influence of the antimicrobial compounds on the biodegradation behavior of polymers in different environments. No studies have been carried out or marine media to this end.

17.
Molecules ; 26(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805693

RESUMO

Lecithins of different origins and compositions were used for the liposomal encapsulation of carvacrol within the framework of the development of active films for food packaging. Liposomes were incorporated into aqueous polymeric solutions from fully (F) and partially (P) hydrolysed Poly (vinyl alcohol) (PVA) to obtain the films by casting. The particle size distribution and ζ-potential of the liposomal suspensions, as well as their stability over time, were evaluated. Liposomal stability during film formation was analysed through the carvacrol retention in the dried film and the film microstructure. Subtle variations in the size distributions of liposomes from different lecithins were observed. However, the absolute values of the ζ-potential were higher (-52, -57 mV) for soy lecithin (SL) liposomes, followed by those of soy lecithin enriched with phosphatidylcholine (SL-PC) (-43, -50 mV) and sunflower lecithin (SFL) (-33, -38 mV). No significant changes in the liposomal properties were observed during the study period. Lyotropic mesomorphism of lipid associations and carvacrol leakage occurred to differing extents during the film drying step, depending on the membrane lipid composition and surface charge. Liposomes obtained with SL-PC were the most effective at maintaining the stability of carvacrol emulsion during film formation, which led to the greatest carvacrol retention in the films, whereas SFL gave rise to the least stable system and the highest carvacrol losses. P-PVA was less sensitive to the emulsion destabilisation due to its greater bonding capacity with carvacrol. Therefore, P-PVA with carvacrol-loaded SL-PC liposomes has great potential to produce active films for food packaging applications.


Assuntos
Cimenos/administração & dosagem , Embalagem de Alimentos/métodos , Lipossomos/química , Álcool de Polivinil/química , Anti-Infecciosos/administração & dosagem , Antioxidantes/administração & dosagem , Plásticos Biodegradáveis/química , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Emulsões , Conservação de Alimentos/métodos , Humanos , Lecitinas/química , Lipossomos/ultraestrutura , Microscopia Eletrônica de Varredura , Tamanho da Partícula
18.
Foods ; 9(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198371

RESUMO

The extraction of water-soluble bioactive compounds using different green methods is an eco-friendly alternative for valorizing agricultural wastes such as rice straw (RS). In this study, aqueous extracts of RS (particles < 500 µm) were obtained using ultrasound (US), reflux heating (HT), stirring (ST) and a combination of US and ST (USST) or HT (USHT). The extraction kinetics was well fitted to a pseudo-second order model. As regards phenolic compound yield, the US method (342 mg gallic acid (GAE). 100 g-1 RS) was more effective than the ST treatment (256 mg GAE.100 g-1 RS), reaching an asymptotic value after 30 min of process. When combined with HT (USHT), the US pre-treatment led to the highest extraction of phenolic compounds from RS (486 mg GAE.100 g-1 RS) while the extract exhibited the greatest antioxidant activity. Furthermore, the USHT extract reduced the initial counts of Listeria innocua by 1.7 logarithmic cycles. Therefore, the thermal aqueous extraction of RS applying the 30 min US pre-treatment, represents a green and efficient approach to obtain bioactive extracts for food applications.

19.
J Food Sci ; 85(4): 1177-1185, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32144808

RESUMO

Polylactic acid (PLA) dissolved (15 wt.%) in ethyl acetate (EtAc): dimethyl sulfoxide (DMSO) binary systems (0:1; 1:3, and 2:3 v/v) was used as carrier to obtain carvacrol (CA)-loaded (20 wt.% with respect to PLA) matrices by electrospinning, in comparison with solvent casting. Field emission scanning electron microscopy (FESEM) observations showed that CA-loaded electrospun fibers were thinner than the CA-free ones, and their encapsulating efficiency (EE) increased when EtAc was present in the solvent. The cast films had higher EE (up to 89%) than the electrospun mats (maximum 68%). Thermogravimetric analysis and differential scanning calorimetry revealed that CA-free matrices retain more solvent than the samples with CA; this effect is being more noticeable in fibers rather than in cast films. The thermal analysis revealed stronger retention forces of CA in the fibers than in the cast material and the CA plasticizing effect in the PLA matrices, in accordance with its retained amount. PRACTICAL APPLICATION: The carvacrol-loaded polylactic acid materials obtained in this study are intended to serve as possible active layer in obtaining active (antimicrobial and/or antioxidant) multilayer materials for the packaging of foodstuffs, when applied onto a supporting polymer layer. Active properties of the material, as well as the potential carvacrol sensory impact, in packaged products should be assessed in further studies.


Assuntos
Cimenos/química , Composição de Medicamentos/métodos , Poliésteres/química , Varredura Diferencial de Calorimetria , Portadores de Fármacos/química , Composição de Medicamentos/instrumentação , Fenômenos Mecânicos , Microscopia Eletrônica de Varredura , Polímeros/química
20.
Polymers (Basel) ; 12(2)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102448

RESUMO

Lecithin-encapsulated carvacrol has been incorporated into poly (vinyl alcohol) (PVA) for the purpose of obtaining active films for food packaging application. The influence of molecular weight (Mw) and degree of hydrolysis (DH) of the polymer on its ability to retain carvacrol has been analysed, as well as the changes in the film microstructure, thermal behaviour, and functional properties as packaging material provoked by liposome incorporation into PVA matrices. The films were obtained by casting the PVA aqueous solutions where liposomes were incorporated until reaching 0 (non-loaded liposomes), 5 or 10 g carvacrol per 100 g polymer. The non-acetylated, high Mw polymer provided films with a better mechanical performance, but less CA retention and a more heterogeneous structure. In contrast, partially acetylated, low Mw PVA gave rise to more homogenous films with a higher carvacrol content. Lecithin enhanced the thermal stability of both kinds of PVA, but reduced the crystallinity degree of non-acetylated PVA films, although it did not affect this parameter in acetylated PVA when liposomes contained carvacrol. The mechanical and barrier properties of the films were modified by liposome incorporation in line with the induced changes in crystallinity and microstructure of the films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...