Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 463(Pt 1): 141105, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39243617

RESUMO

The potato protein patatin embeds bioactive peptides that require targeted hydrolysis to be released as promising food additives. This study presents a patatin-specific protease assay for assessing a wide range of protease activities in high-throughput format. Conjugating patatin to the amine reactive fluorogenic BODIPY FL dye provided a stable protease substrate with efficient homo-FRET quenching at a low degree (7-8) of labeling. Compared to commercial BODIPY-casein, BODIPY-patatin provided higher fluorescence enhancement (by de-quenching) at high protease concentrations, while the sensitivity was generally comparable for both highly specific (e.g. Trypsin) and industrial relevant proteases (e.g. Alcalase and Neutrase) at low doses. For Chymotrypsin, BODIPY-patatin provided a 39 % response improvement at 5 ng dose. A peptide-centric analysis of mass spectrometry-based bottom-up proteomics data identified several BODIPY-labeling sites with varying occupancies in patatin, indicating heterogenous labeling under the applied conjugation conditions. BODIPY-labeled patatin complements commercial BODIPY-labeled casein as a globular, plant-based alternative for screening of proteolytic activity.

2.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38479791

RESUMO

Lactic acid bacteria (LAB) have evolved into fastidious microorganisms that require amino acids from environmental sources. Some LAB have cell envelope proteases (CEPs) that drive the proteolysis of high molecular weight proteins like casein in milk. CEP activity is typically studied using casein as the predominant substrate, even though CEPs can hydrolyze other protein sources. Plant protein hydrolysis by LAB has rarely been connected to the activity of specific CEPs. This study aims to show the activity of individual CEPs using LAB growth in a minimal growth medium supplemented with high molecular weight casein or potato proteins. Using Lactococcus cremoris MG1363 as isogenic background to express CEPs, we demonstrate that CEP activity is directly related to growth in the protein-supplemented minimal growth media. Proteolysis is analyzed based on the amino acid release, allowing a comparison of CEP activities and analysis of amino acid utilization by L. cremoris MG1363. This approach provides a basis to analyze CEP activity on plant-based protein substrates as casein alternatives and to compare activity of CEP homologs.


Assuntos
Lactococcus lactis , Peptídeo Hidrolases , Animais , Peptídeo Hidrolases/metabolismo , Caseínas/metabolismo , Peso Molecular , Endopeptidases/química , Lactococcus lactis/metabolismo , Aminoácidos/metabolismo
3.
Microorganisms ; 11(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764099

RESUMO

Lactic acid bacteria (LAB) have an extracellular proteolytic system that includes a multi-domain, cell envelope protease (CEP) with a subtilisin homologous protease domain. These CEPs have different proteolytic activities despite having similar protein sequences. Structural characterization has previously been limited to CEP homologs of dairy- and human-derived LAB strains, excluding CEPs of plant-derived LAB strains. CEP structures are a challenge to determine experimentally due to their large size and attachment to the cell envelope. This study aims to clarify the prevalence and structural diversity of CEPs by using the structure prediction software AlphaFold 2. Domain boundaries are clarified based on a comparative analysis of 21 three-dimensional structures, revealing novel domain architectures of CEP homologs that are not necessarily restricted to specific LAB species or ecological niches. The C-terminal flanking region of the protease domain is divided into fibronectin type-III-like domains with various structural traits. The analysis also emphasizes the existence of two distinct domains for cell envelope attachment that are preceded by an intrinsically disordered cell wall spanning domain. The domain variants and their combinations provide CEPs with different stability, proteolytic activity, and potentially adhesive properties, making CEPs targets for steering proteolytic activity with relevance for both food development and human health.

4.
Int J Food Microbiol ; 381: 109889, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36057216

RESUMO

Plant-based food products are generating a growing interest as part of the ongoing transition to a primarily plant-based diet, which makes demands to the quality, functionality, and health properties of plant proteins. Microbes used for traditional food fermentations such as lactic acid bacteria (LAB) and fungi (yeasts and molds) carry out enzymatic changes on their protein substrates by which technological and sensorial characteristics can be improved. The literature on extracellular proteases targeting plant proteins, on the other hand, is scattered with only a narrow representation of plants even for traditionally plant-based products. Therefore, this review aims to explore the current state of knowledge regarding the application potential of microbial extracellular proteases targeting plant proteins, with a focus on traditional applied food microbes. Plant proteins are targeted by proteolytic microbes of both animal and plant origins, and their proteases show a wide range of activities. Extracellular microbial proteases can hydrolyze specific protein-based allergens and even reduce the toxicity of plant proteins. Additionally, microbial assisted proteolysis can improve plant protein digestibility by increasing availability of peptides and amino acids. This catabolic process will change the organoleptic characteristics of fermented plant proteins, and the release of bioactive peptides can provide additional functionalities to the plant matrix. The proteolytic activity is determined by the microbial strain, and it can be quite substrate selective, which is why proteases may be overlooked by the prevalent use of casein as substrate in proteolytic screenings. The synergetic effects of LAB and fungal species consortia can facilitate and steer plant protein hydrolysis by which co-fermentation may increase or change the properties of plant protein hydrolysates. Microbes do not necessarily require extracellular proteases because endogenous proteases in a plant-matrix may meet the microbial amino acid requirements. However, extracellular proteases have the potential to provide central properties to diverse food-matrixes by which the full proteolytic potential of food microbes needs to be explored in order to facilitate the development of high-quality plant-based food products.


Assuntos
Lactobacillales , Peptídeo Hidrolases , Aminoácidos/metabolismo , Animais , Caseínas/metabolismo , Endopeptidases/metabolismo , Fermentação , Microbiologia de Alimentos , Lactobacillales/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Hidrolisados de Proteína
5.
Sci Rep ; 9(1): 18927, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831797

RESUMO

Radical-Induced Cell Death1 (RCD1) functions as a cellular hub interacting with intrinsically disordered transcription factor regions, which lack a well-defined three-dimensional structure, to regulate plant stress. Here, we address the molecular evolution of the RCD1-interactome. Using bioinformatics, its history was traced back more than 480 million years to the emergence of land plants with the RCD1-binding short linear motif (SLiM) identified from mosses to flowering plants. SLiM variants were biophysically verified to be functional and to depend on the same RCD1 residues as the DREB2A transcription factor. Based on this, numerous additional members may be assigned to the RCD1-interactome. Conservation was further strengthened by similar intrinsic disorder profiles of the transcription factor homologs. The unique structural plasticity of the RCD1-interactome, with RCD1-binding induced α-helix formation in DREB2A, but not detectable in ANAC046 or ANAC013, is apparently conserved. Thermodynamic analysis also indicated conservation with interchangeability between Arabidopsis and soybean RCD1 and DREB2A, although with fine-tuned co-evolved binding interfaces. Interruption of conservation was observed, as moss DREB2 lacked the SLiM, likely reflecting differences in plant stress responses. This whole-interactome study uncovers principles of the evolution of SLiM:hub-interactions, such as conservation of α-helix propensities, which may be paradigmatic for disorder-based interactomes in eukaryotes.


Assuntos
Evolução Molecular , Glycine max , Hordeum , Proteínas Nucleares , Mapas de Interação de Proteínas , Proteínas de Soja , Hordeum/química , Hordeum/genética , Hordeum/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Secundária de Proteína , Proteínas de Soja/química , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Glycine max/química , Glycine max/genética , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA