Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280642

RESUMO

BackgroundRecovery from coronavirus disease 2019 (COVID-19) can be impaired by the persistence of symptoms or new-onset health complications, commonly referred to as Long COVID. In a subset of patients, Long COVID is associated with immune system perturbations of unknown etiology, which could be related to compromised immunoregulatory mechanisms. ObjectiveThe aim of this scoping review was to investigate if regulatory T cell (Treg) dysregulation is observable beyond the acute illness and if it might be involved in Long COVID immunopathology. DesignA systematic search of studies investigating Tregs during COVID-19 convalescence was conducted on MEDLINE (via Pubmed) and Web of Science. ResultsThe literature search yielded 17 relevant studies, of which three included a distinct cohort of patients with Long COVID. The reviewed studies suggest that the Treg population of COVID-19 patients can reconstitute quantitatively and functionally during recovery. However, the comparison between recovered and seronegative controls revealed that an infection-induced dysregulation of the Treg compartment can be sustained for at least several months. The small number of studies investigating Tregs in Long COVID allowed no firm conclusions to be drawn about their involvement in the syndromes etiology. Yet, even almost one year post-infection Long COVID patients exhibit significantly altered proportions of Tregs within the CD4+ T cell population. ConclusionsPersistent alterations in cell frequency in Long COVID patients indicate that Treg dysregulation might be linked to immune system-associated sequelae. Future studies should aim to address the association of Treg adaptations with different symptom clusters and blood parameters beyond the sole quantification of cell frequencies while adhering to consensualized phenotyping strategies.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20112763

RESUMO

BackgroundCovid-19, the disease caused by infection with SARS-CoV-2, has developed to a pandemic causing more than 239, 000 deaths worldwide as of 6th May according to the World Health Organization (WHO). It presents with a highly variable disease course ranging from a large proportion of asymptomatic cases to severe respiratory failure in 17-29% of cases even in the absence of apparent comorbidities 1, 2. This implies a diverse host immune response to SARS-CoV-2. The immunological characteristics underlying these divergent disease courses, however, still remain elusive. While insights into abrogations of innate immunity begin to emerge, adaptive immune responses towards SARS-CoV-2 are poorly investigated, although they serve as immune signatures of protection and vaccine responses. We therefore set out to characterize immune signatures of convalescent COVID-19 patients stratified according to their disease severity. MethodsWe performed high-dimensional flow cytometric profiling of peripheral blood mononuclear cells of convalescent COVID-19 patients who we stratified according to their disease severity by a physician-assisted questionnaire based assessment of COVID-19 symptoms. ResultsSurprisingly, we did not observe any difference in the relative proportions of any major immune cell type in convalescent patients presenting with different severity of COVID-19 disease except for a reduction in monocytes. The frequency of Tnaive T cells was significantly reduced in CD4+ and CD8+ T cells, whereas other T cell differentiations states (TCM, TEM, TEMRA) remained relatively unaffected by COVID-19 severity as assessed approximately two weeks after infection. ConclusionsIn our COVID-19 patient cohort, which is characterized by absence of comorbidities and therapeutic interventions other than symptomatic antipyretics, the immunophenotype is similar irrespective of a highly variable disease severity. Convalescence is therefore associated with a rather uniform immune signature. Abrogations, which were previously identified in the innate and adaptive immune compartment of COVID-19 patients should be scrutinized for direct associations with a preconditioned immune system shaped and made vulnerable for SARS-CoV-2 by preexisting comorbidities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA