Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Cogn Neurosci ; 33(7): 1253-1270, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34496403

RESUMO

The fusion of immersive virtual reality, kinematic movement tracking, and EEG offers a powerful test bed for naturalistic neuroscience research. Here, we combined these elements to investigate the neuro-behavioral mechanisms underlying precision visual-motor control as 20 participants completed a three-visit, visual-motor, coincidence-anticipation task, modeled after Olympic Trap Shooting and performed in immersive and interactive virtual reality. Analyses of the kinematic metrics demonstrated learning of more efficient movements with significantly faster hand RTs, earlier trigger response times, and higher spatial precision, leading to an average of 13% improvement in shot scores across the visits. As revealed through spectral and time-locked analyses of the EEG beta band (13-30 Hz), power measured prior to target launch and visual-evoked potential amplitudes measured immediately after the target launch correlated with subsequent reactive kinematic performance in the shooting task. Moreover, both launch-locked and shot/feedback-locked visual-evoked potentials became earlier and more negative with practice, pointing to neural mechanisms that may contribute to the development of visual-motor proficiency. Collectively, these findings illustrate EEG and kinematic biomarkers of precision motor control and changes in the neurophysiological substrates that may underlie motor learning.


Assuntos
Realidade Virtual , Biomarcadores , Humanos , Aprendizagem , Desempenho Psicomotor , Tempo de Reação
2.
Front Psychol ; 9: 58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467693

RESUMO

Sensorimotor learning refers to improvements that occur through practice in the performance of sensory-guided motor behaviors. Leveraging novel technical capabilities of an immersive virtual environment, we probed the component kinematic processes that mediate sensorimotor learning. Twenty naïve subjects performed a simulated marksmanship task modeled after Olympic Trap Shooting standards. We measured movement kinematics and shooting performance as participants practiced 350 trials while receiving trial-by-trial feedback about shooting success. Spatiotemporal analysis of motion tracking elucidated the ballistic and refinement phases of hand movements. We found systematic changes in movement kinematics that accompanied improvements in shot accuracy during training, though reaction and response times did not change over blocks. In particular, we observed longer, slower, and more precise ballistic movements that replaced effort spent on corrections and refinement. Collectively, these results leverage developments in immersive virtual reality technology to quantify and compare the kinematics of movement during early learning of full-body sensorimotor orienting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...