Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(11): 7253-7267, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37217193

RESUMO

The blood-brain barrier (BBB) represents a major obstacle to delivering drugs to the central nervous system (CNS), resulting in the lack of effective treatment for many CNS diseases including brain cancer. To accelerate CNS drug development, computational prediction models could save the time and effort needed for experimental evaluation. Here, we studied BBB permeability focusing on active transport (influx and efflux) as well as passive diffusion using previously published and self-curated data sets. We created prediction models based on physicochemical properties, molecular substructures, or their combination to understand which mechanisms contribute to BBB permeability. Our results show that features that predicted passive diffusion over membranes overlap with features that explain endothelial permeation of approved CNS-active drugs. We also identified physical properties and molecular substructures that positively or negatively predicted BBB transport. These findings provide guidance toward identifying BBB-permeable compounds by optimally matching physicochemical and molecular properties to BBB transport mechanisms.


Assuntos
Barreira Hematoencefálica , Sistema Nervoso Central , Transporte Biológico , Permeabilidade , Difusão , Fármacos do Sistema Nervoso Central/farmacologia
2.
Clin Neurol Neurosurg ; 195: 105899, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32516640

RESUMO

OBJECTIVE: Chronic subdural hematoma (CSDH) is a condition that is frequently seen in the neurological and neurosurgical practice. Surgical treatment is overall preferred; however, conservative treatment is also an option. Both surgical and conservative treatment of CSDH vary across neurosurgeons. The aim of the present study was to evaluate different treatment strategies for CSDH among neurosurgeons in different countries. MATERIAL AND METHODS: We designed a survey that was sent to neurosurgeons affiliated with the Congress of Neurological Surgeons.The questions were related to the conservative and surgical treatment methods of CSDH. Furthermore, we also included questions related to post-operative care. RESULTS: 443 neurosurgeons completed the survey. 46.2 % of the respondents sometimes use dexamethasone as monotherapy. Overall, 26.2 % estimated dexamethasone to have a high efficacy on CSDH. A Glasgow Coma Score lower than 12 was considered to be the most important indication for surgery by 57.8 %. Double burr hole is the preferred surgical technique by 48.1 % of the respondents. One day after surgery, 69.3 % routinely orders a CT-scan. CONCLUSIONS: The majority of the neurosurgeons worldwide remains reluctant in the use of conservative treatment methods in the management of CSDH. Further research is needed to assess the effectivity and side-effects of these conservative methods.


Assuntos
Tratamento Conservador/estatística & dados numéricos , Hematoma Subdural Crônico/tratamento farmacológico , Hematoma Subdural Crônico/cirurgia , Padrões de Prática Médica/estatística & dados numéricos , Trepanação/estatística & dados numéricos , Anti-Inflamatórios/uso terapêutico , Tratamento Conservador/métodos , Dexametasona/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurocirurgiões , Inquéritos e Questionários , Trepanação/métodos
3.
Nat Commun ; 11(1): 2935, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523045

RESUMO

Personalized cancer treatments using combinations of drugs with a synergistic effect is attractive but proves to be highly challenging. Here we present an approach to uncover the efficacy of drug combinations based on the analysis of mono-drug effects. For this we used dose-response data from pharmacogenomic encyclopedias and represent these as a drug atlas. The drug atlas represents the relations between drug effects and allows to identify independent processes for which the tumor might be particularly vulnerable when attacked by two drugs. Our approach enables the prediction of combination-therapy which can be linked to tumor-driving mutations. By using this strategy, we can uncover potential effective drug combinations on a pan-cancer scale. Predicted synergies are provided and have been validated in glioblastoma, breast cancer, melanoma and leukemia mouse-models, resulting in therapeutic synergy in 75% of the tested models. This indicates that we can accurately predict effective drug combinations with translational value.


Assuntos
Sinergismo Farmacológico , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Biologia Computacional , Combinação de Medicamentos , Glioblastoma/metabolismo , Humanos , Modelos Logísticos , Melanoma/metabolismo
4.
Drug Resist Updat ; 43: 29-37, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31054489

RESUMO

Targeted therapy against driver mutations responsible for cancer progression has been shown to be effective in many tumor types. For glioblastoma (GBM), the epidermal growth factor receptor (EGFR) gene is the most frequently mutated oncogenic driver and has therefore been considered an attractive target for therapy. However, so far responses to EGFR-pathway inhibitors have been disappointing. We performed an exhaustive analysis of the mechanisms that might account for therapy resistance against EGFR inhibition. We define two major mechanisms of resistance and propose modalities to overcome them. The first resistance mechanism concerns target independence. In this case, cells have lost expression of the EGFR protein and experience no negative impact of EGFR targeting. Loss of extrachromosomally encoded EGFR as present in double minute DNA is a frequent mechanism for this type of drug resistance. The second mechanism concerns target compensation. In this case, cells will counteract EGFR inhibition by activation of compensatory pathways that render them independent of EGFR signaling. Compensatory pathway candidates are platelet-derived growth factor ß (PDGFß), Insulin-like growth factor 1 (IGFR1) and cMET and their downstream targets, all not commonly mutated at the time of diagnosis alongside EGFR mutation. Given that both mechanisms make cells independent of EGFR expression, other means have to be found to eradicate drug resistant cells. To this end we suggest rational strategies which include the use of multi-target therapies that hit truncation mutations (mechanism 1) or multi-target therapies to co-inhibit compensatory proteins (mechanism 2).


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Terapia de Alvo Molecular/métodos , Mutação , Oncogenes/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Resultado do Tratamento
5.
Drug Resist Updat ; 40: 17-24, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30439622

RESUMO

Glioblastoma is the most common and malignant form of brain cancer, for which the standard treatment is maximal surgical resection, radiotherapy and chemotherapy. Despite these interventions, mean overall survival remains less than 15 months, during which extensive tumor infiltration throughout the brain occurs. The resulting metastasized cells in the brain are characterized by chemotherapy resistance and extensive intratumoral heterogeneity. An orthogonal approach attacking both intracellular resistance mechanisms as well as intercellular heterogeneity is necessary to halt tumor progression. For this reason, we established the WINDOW Consortium (Window for Improvement for Newly Diagnosed patients by Overcoming disease Worsening), in which we are establishing a strategy for rational selection and development of effective therapies against glioblastoma. Here, we overview the many challenges posed in treating glioblastoma, including selection of drug combinations that prevent therapy resistance, the need for drugs that have improved blood brain barrier penetration and strategies to counter heterogeneous cell populations within patients. Together, this forms the backbone of our strategy to attack glioblastoma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/efeitos adversos
6.
Mol Cancer Ther ; 17(2): 347-354, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28958992

RESUMO

Glioblastoma (GBM) is a highly aggressive and lethal brain cancer type. PI3K and MAPK inhibitors have been studied preclinically in GBM as monotherapy, but not in combination with radiotherapy, which is a key component of the current standard treatment of GBM. In our study, GBM cell lines and patient representative primary cultures were grown as multicellular spheroids. Spheroids were treated with a panel of small-molecule drugs including MK2206, RAD001, BEZ235, MLN0128, and MEK162, alone and in combination with irradiation. Following treatment, spheroid growth parameters (growth rate, volume reduction, and time to regrow), cell-cycle distribution and expression of key target proteins were evaluated. In vivo, the effect of irradiation (3 × 2 Gy) without or with MEK162 (50 mg/kg) was studied in orthotopic GBM8 brain tumor xenografts with endpoints tumor growth and animal survival. The MAPK-targeting agent MEK162 was found to enhance the effect of irradiation as demonstrated by growth inhibition of spheroids. MEK162 downregulated and dephosphorylated the cell-cycle checkpoint proteins CDK1/CDK2/WEE1 and DNA damage response proteins p-ATM/p-CHK2. When combined with radiation, this led to a prolonged DNA damage signal. In vivo data on tumor-bearing animals demonstrated a significantly reduced growth rate, increased growth delay, and prolonged survival time. In addition, RNA expression of responsive cell cultures correlated to mesenchymal stratification of patient expression data. In conclusion, the MAPK inhibitor MEK162 was identified as a radiosensitizer in GBM spheroids in vitro and in orthotopic GBM xenografts in vivo The data are supportive for implementation of this targeted agent in an early-phase clinical study in GBM patients. Mol Cancer Ther; 17(2); 347-54. ©2017 AACRSee all articles in this MCT Focus section, "Developmental Therapeutics in Radiation Oncology."


Assuntos
Benzimidazóis/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Radiossensibilizantes/farmacologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Feminino , Glioblastoma/patologia , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Camundongos , Camundongos Nus , Bibliotecas de Moléculas Pequenas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...