Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6697): eadk9227, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753786

RESUMO

Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a cloud-based artificial intelligence experiment planner, resulted in the discovery of 21 new state-of-the-art materials. Gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing-and democratizing-scientific discovery.

2.
ACS Cent Sci ; 10(5): 1054-1064, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38799656

RESUMO

Current approaches to evaluate molecular complexity use algorithmic complexity, rooted in computer science, and thus are not experimentally measurable. Directly evaluating molecular complexity could be used to study directed vs undirected processes in the creation of molecules, with potential applications in drug discovery, the origin of life, and artificial life. Assembly theory has been developed to quantify the complexity of a molecule by finding the shortest path to construct the molecule from building blocks, revealing its molecular assembly index (MA). In this study, we present an approach to rapidly infer the MA of molecules from spectroscopic measurements. We demonstrate that the MA can be experimentally measured by using three independent techniques: nuclear magnetic resonance (NMR), tandem mass spectrometry (MS/MS), and infrared spectroscopy (IR). By identifying and analyzing the number of absorbances in IR spectra, carbon resonances in NMR, or molecular fragments in tandem MS, the MA of an unknown molecule can be reliably estimated. This represents the first experimentally quantifiable approach to determining molecular assembly. This paves the way to use experimental techniques to explore the evolution of complex molecules as well as a unique marker of where an evolutionary process has been operating.

3.
Nat Commun ; 15(1): 1984, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443339

RESUMO

The exponential growth of the power of modern digital computers is based upon the miniaturization of vast nanoscale arrays of electronic switches, but this will be eventually constrained by fabrication limits and power dissipation. Chemical processes have the potential to scale beyond these limits by performing computations through chemical reactions, yet the lack of well-defined programmability limits their scalability and performance. Here, we present a hybrid digitally programmable chemical array as a probabilistic computational machine that uses chemical oscillators using Belousov-Zhabotinsky reaction partitioned in interconnected cells as a computational substrate. This hybrid architecture performs efficient computation by distributing information between chemical and digital domains together with inbuilt error correction logic. The efficiency is gained by combining digital logic with probabilistic chemical logic based on nearest neighbour interactions and hysteresis effects. We demonstrated the computational capabilities of our hybrid processor by implementing one- and two-dimensional Chemical Cellular Automata demonstrating emergent dynamics of life-like entities called Chemits. Additionally, we demonstrate hybrid probabilistic logic as a viable logic for solving combinatorial optimization problems.

5.
Nat Comput Sci ; 4(3): 200-209, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459272

RESUMO

Here we present a machine learning model trained on electron density for the production of host-guest binders. These are read out as simplified molecular-input line-entry system (SMILES) format with >98% accuracy, enabling a complete characterization of the molecules in two dimensions. Our model generates three-dimensional representations of the electron density and electrostatic potentials of host-guest systems using a variational autoencoder, and then utilizes these representations to optimize the generation of guests via gradient descent. Finally the guests are converted to SMILES using a transformer. The successful practical application of our model to established molecular host systems, cucurbit[n]uril and metal-organic cages, resulted in the discovery of 9 previously validated guests for CB[6] and 7 unreported guests (with association constant Ka ranging from 13.5 M-1 to 5,470 M-1) and the discovery of 4 unreported guests for [Pd214]4+ (with Ka ranging from 44 M-1 to 529 M-1).

6.
Nat Commun ; 15(1): 1240, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336880

RESUMO

Robotic platforms for chemistry are developing rapidly but most systems are not currently able to adapt to changing circumstances in real-time. We present a dynamically programmable system capable of making, optimizing, and discovering new molecules which utilizes seven sensors that continuously monitor the reaction. By developing a dynamic programming language, we demonstrate the 10-fold scale-up of a highly exothermic oxidation reaction, end point detection, as well as detecting critical hardware failures. We also show how the use of in-line spectroscopy such as HPLC, Raman, and NMR can be used for closed-loop optimization of reactions, exemplified using Van Leusen oxazole synthesis, a four-component Ugi condensation and manganese-catalysed epoxidation reactions, as well as two previously unreported reactions, discovered from a selected chemical space, providing up to 50% yield improvement over 25-50 iterations. Finally, we demonstrate an experimental pipeline to explore a trifluoromethylations reaction space, that discovers new molecules.

7.
Angew Chem Int Ed Engl ; 63(9): e202315207, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38155102

RESUMO

Automated chemistry platforms have been widely explored, but many focus on fixed tasks for chemical synthesis or analysis. However, a typical synthetic chemistry workflow utilizes both, such as kinetic measurements for reaction development and optimization. Due to their repetitive and time-consuming nature, kinetic measurements are often omitted, which limits the mechanistic investigation of reactions. Herein, we present a "Chemputer" platform with on-line analytics (UV/Vis, NMR) which automates routine kinetic measurements. The system's capabilities are showcased by exploring an inverse electron-demand Diels-Alder using initial rate measurements, a metal complexation using variable time normalization analysis (VTNA), and formation of a series of tosylamide derivatives using Hammett analysis. Over 60 individual experiments are presented which required minimal intervention, highlighting the significant time savings of automation. Owing to the modular design of the platform, which facilitates rapid integration of commercial analytical tools, our approach is widely accessible and adjustable to the reaction under investigation. The platform is operated using the chemical programming language, XDL, hence experimental procedures and results are stored in a precise, computer-readable format. We propose that widespread adoption of this reporting protocol in the chemical community could build a database of validated kinetic data beneficial for Machine Learning.

8.
Nature ; 622(7982): 321-328, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794189

RESUMO

Scientists have grappled with reconciling biological evolution1,2 with the immutable laws of the Universe defined by physics. These laws underpin life's origin, evolution and the development of human culture and technology, yet they do not predict the emergence of these phenomena. Evolutionary theory explains why some things exist and others do not through the lens of selection. To comprehend how diverse, open-ended forms can emerge from physics without an inherent design blueprint, a new approach to understanding and quantifying selection is necessary3-5. We present assembly theory (AT) as a framework that does not alter the laws of physics, but redefines the concept of an 'object' on which these laws act. AT conceptualizes objects not as point particles, but as entities defined by their possible formation histories. This allows objects to show evidence of selection, within well-defined boundaries of individuals or selected units. We introduce a measure called assembly (A), capturing the degree of causation required to produce a given ensemble of objects. This approach enables us to incorporate novelty generation and selection into the physics of complex objects. It explains how these objects can be characterized through a forward dynamical process considering their assembly. By reimagining the concept of matter within assembly spaces, AT provides a powerful interface between physics and biology. It discloses a new aspect of physics emerging at the chemical scale, whereby history and causal contingency influence what exists.


Assuntos
Evolução Biológica , Modelos Teóricos , Física , Seleção Genética , Humanos , Evolução Cultural , Invenções , Origem da Vida , Física/métodos , Animais
9.
ACS Cent Sci ; 9(8): 1525-1537, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37637738

RESUMO

Before leveraging big data methods like machine learning and artificial intelligence (AI) in chemistry, there is an imperative need for an affordable, universal digitization standard. This mirrors the foundational requisites of the digital revolution, which demanded standard architectures with precise specifications. Recently, we have developed automated platforms tailored for chemical AI-driven exploration, including the synthesis of molecules, materials, nanomaterials, and formulations. Our focus has been on designing and constructing affordable standard hardware and software modules that serve as a blueprint for chemistry digitization across varied fields. Our platforms can be categorized into four types based on their applications: (i) discovery systems for the exploration of chemical space and novel reactivity, (ii) systems for the synthesis and manufacture of fine chemicals, (iii) platforms for formulation discovery and exploration, and (iv) systems for materials discovery and synthesis. We also highlight the convergent evolution of these platforms through shared hardware, firmware, and software alongside the creation of a unique programming language for chemical and material systems. This programming approach is essential for reliable synthesis, designing experiments, discovery, optimization, and establishing new collaboration standards. Furthermore, it is crucial for verifying literature findings, enhancing experimental outcome reliability, and fostering collaboration and sharing of unsuccessful experiments across different research labs.

10.
ACS Cent Sci ; 9(7): 1453-1465, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37521801

RESUMO

Chemical and molecular-based computers may be promising alternatives to modern silicon-based computers. In particular, hybrid systems, where tasks are split between a chemical medium and traditional silicon components, may provide access and demonstration of chemical advantages such as scalability, low power dissipation, and genuine randomness. This work describes the development of a hybrid classical-molecular computer (HCMC) featuring an electrochemical reaction on top of an array of discrete electrodes with a fluorescent readout. The chemical medium, optical readout, and electrode interface combined with a classical computer generate a feedback loop to solve several canonical optimization problems in computer science such as number partitioning and prime factorization. Importantly, the HCMC makes constructive use of experimental noise in the optical readout, a milestone for molecular systems, to solve these optimization problems, as opposed to in silico random number generation. Specifically, we show calculations stranded in local minima can consistently converge on a global minimum in the presence of experimental noise. Scalability of the hybrid computer is demonstrated by expanding the number of variables from 4 to 7, increasing the number of possible solutions by 1 order of magnitude. This work provides a stepping stone to fully molecular approaches to solving complex computational problems using chemistry.

11.
Energy Environ Sci ; 16(6): 2603-2610, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37323468

RESUMO

Due to the increasing energy density demands of battery technology, it is vital to develop electrolytes with high electron storage capacity. Polyoxometalate (POM) clusters can act as electron sponges, storing and releasing multiple electrons and have potential as electron storage electrolytes for flow batteries. Despite this rational design of clusters for high storage ability can not yet be achieved as little is known about the features influencing storage ability. Here we report that the large POM clusters, {P5W30} and {P8W48}, can store up to 23 e- and 28 e- per cluster in acidic aqueous solution, respectively. Our investigations reveal key structural and speciation factors influencing the improved behaviour of these POMs over those previously reported (P2W18). We show, using NMR and MS, that for these polyoxotungstates hydrolysis equilibria for the different tungstate salts is key to explaining unexpected storage trends while the performance limit for {P5W30} and {P8W48}, can be attributed to unavoidable hydrogen generation, evidenced by GC. NMR spectroscopy, in combination with the MS analysis, provided experimental evidence for a cation/proton exchange process during the reduction/reoxidation process of {P5W30} which likely occurs due to this hydrogen generation. Our study offers a deeper understanding of the factors affecting the electron storage ability of POMs and provides insights allowing for further development of these materials for energy storage.

12.
Proc Natl Acad Sci U S A ; 120(17): e2220045120, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068251

RESUMO

Interpreting the outcome of chemistry experiments consistently is slow and frequently introduces unwanted hidden bias. This difficulty limits the scale of collectable data and often leads to exclusion of negative results, which severely limits progress in the field. What is needed is a way to standardize the discovery process and accelerate the interpretation of high-dimensional data aided by the expert chemist's intuition. We demonstrate a digital Oracle that interprets chemical reactivity using probability. By carrying out >500 reactions covering a large space and retaining both the positive and negative results, the Oracle was able to rediscover eight historically important reactions including the aldol condensation, Buchwald-Hartwig amination, Heck, Mannich, Sonogashira, Suzuki, Wittig, and Wittig-Horner reactions. This paradigm for decoding reactivity validates and formalizes the expert chemist's experience and intuition, providing a quantitative criterion of discovery scalable to all available experimental data.

13.
J Phys Chem Lett ; 14(16): 3929-3938, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37078273

RESUMO

The discrete-dipole approximation (DDA) is widely applied to study the spectral properties of plasmonic nanostructures. However, the high computational cost limits the application of DDA in static geometries, making it impractical for investigating spectral properties during structural transformations. Here we developed an efficient method to simulate spectra of dynamically evolving structures by formulating an iterative calculation process based on the rank-one decomposition of matrices and DDA. By representing structural transformation as the change of dipoles and their properties, the updated polarizations can be computed efficiently. The improvement in computational efficiency was benchmarked, demonstrating up to several hundred times acceleration for a system comprising ca. 4000 dipoles. The rank-one decomposition accelerated DDA method (RD-DDA) can be used directly to investigate the optical properties of nanostructural transformations defined by atomic- or continuum-scale processes, which is essential for understanding the growth mechanisms of nanoparticles and algorithm-driven structural optimization toward enhanced optical properties.

14.
J Am Chem Soc ; 145(4): 2332-2341, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649125

RESUMO

Library generation experiments are a key part of the discovery of new materials, methods, and models in chemistry, but the question of how to generate high quality libraries to enable discovery is nontrivial. Herein, we use coordination chemistry to demonstrate the automation of many of the workflows used for library generation in automated hardware including the Chemputer. First, we explore the target-oriented synthesis of three influential coordination complexes, to validate key synthetic operations in our system; second, the generation of focused libraries in chemical and process space; and third, the development of a new workflow for prospecting library formation. This involved Bayesian optimization using a Gaussian process as surrogate model combined with a metric for novelty (or serendipity) quantification based on mass spectrometry data. In this way, we show directed exploration of a process space toward those areas with rarer observations and build a picture of the diversity in product distributions present across the space. We show that this effectively "engineers" serendipity into our search through the unexpected appearance of acetic anhydride, formed in situ, and solvent degradation products as ligands in an isolable series of three Co(III) anhydride complexes.

15.
Angew Chem Int Ed Engl ; 62(1): e202214203, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36336660

RESUMO

Polyoxopalladates (POPs) are a class of self-assembling palladium-oxide clusters that span a variety of sizes, shapes and compositions. The largest of this family, {Pd84 }Ac , is constructed from 14 building units of {Pd6 } and lined on the inner and outer torus by 28 acetate ligands. Due to its high water solubility, large hydrophobic cavity and distinct 1 H NMR fingerprint {Pd84 }Ac is an ideal molecule for exploring supramolecular behaviour with small organic molecules in aqueous media. Molecular visualisation studies highlighted potential binding sites between {Pd84 }Ac and these species. Nuclear Magnetic Resonance (NMR) techniques, including 1 H NMR, 1 H Diffusion Ordered Spectroscopy (DOSY) and Nuclear Overhauser Spectroscopy (NOESY), were employed to study the supramolecular chemistry of this system. Here, we provide conclusive evidence that {Pd84 }Ac forms a 1 : 7 host-guest complex with benzyl viologen (BV2+ ) in aqueous solution.


Assuntos
Água , Água/química , Espectroscopia de Ressonância Magnética/métodos
16.
Sci Adv ; 8(40): eabo2626, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36206340

RESUMO

We present an autonomous chemical synthesis robot for the exploration, discovery, and optimization of nanostructures driven by real-time spectroscopic feedback, theory, and machine learning algorithms that control the reaction conditions and allow the selective templating of reactions. This approach allows the transfer of materials as seeds between cycles of exploration, opening the search space like gene transfer in biology. The open-ended exploration of the seed-mediated multistep synthesis of gold nanoparticles (AuNPs) via in-line ultraviolet-visible characterization led to the discovery of five categories of nanoparticles by only performing ca. 1000 experiments in three hierarchically linked chemical spaces. The platform optimized nanostructures with desired optical properties by combining experiments and extinction spectrum simulations to achieve a yield of up to 95%. The synthetic procedure is outputted in a universal format using the chemical description language (χDL) with analytical data to produce a unique digital signature to enable the reproducibility of the synthesis.

17.
Nat Chem ; 14(11): 1311-1318, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202987

RESUMO

Robotic systems for synthetic chemistry are becoming more common, but they are expensive, fixed to a narrow set of reactions, and must be used within a complex laboratory environment. A portable system that could synthesize known molecules anywhere, on demand, and in a fully automated way, could revolutionize access to important molecules. Here we present a portable suitcase-sized chemical synthesis platform containing all the modules required for synthesis and purification. The system uses a chemical programming language coupled to a digital reactor generator to produce reactors and executable protocols based on text-based literature syntheses. Simultaneously, the platform generates a reaction pressure fingerprint, used to monitor processes within the reactors and remotely perform a protocol quality control. We demonstrate the system by synthesizing five small organic molecules, four oligopeptides and four oligonucleotides, in good yields and purities, with a total of 24,936 base steps executed over 329 h of platform runtime.


Assuntos
Oligonucleotídeos
18.
Entropy (Basel) ; 24(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35885107

RESUMO

Assembly theory (referred to in prior works as pathway assembly) has been developed to explore the extrinsic information required to distinguish a given object from a random ensemble. In prior work, we explored the key concepts relating to deconstructing an object into its irreducible parts and then evaluating the minimum number of steps required to rebuild it, allowing for the reuse of constructed sub-objects. We have also explored the application of this approach to molecules, as molecular assembly, and how molecular assembly can be inferred experimentally and used for life detection. In this article, we formalise the core assembly concepts mathematically in terms of assembly spaces and related concepts and determine bounds on the assembly index. We explore examples of constructing assembly spaces for mathematical and physical objects and propose that objects with a high assembly index can be uniquely identified as those that must have been produced using directed biological or technological processes rather than purely random processes, thereby defining a new scale of aliveness. We think this approach is needed to help identify the new physical and chemical laws needed to understand what life is, by quantifying what life does.

19.
Science ; 377(6602): 172-180, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857541

RESUMO

Despite huge potential, automation of synthetic chemistry has only made incremental progress over the past few decades. We present an automatically executable chemical reaction database of 100 molecules representative of the range of reactions found in contemporary organic synthesis. These reactions include transition metal-catalyzed coupling reactions, heterocycle formations, functional group interconversions, and multicomponent reactions. The chemical reaction codes or χDLs for the reactions have been stored in a database for version control, validation, collaboration, and data mining. Of these syntheses, more than 50 entries from the database have been downloaded and robotically run in seven modular chemputers with yields and purities comparable to those achieved by an expert chemist. We also demonstrate the automatic purification of a range of compounds using a chromatography module seamlessly coupled to the platform and programmed with the same language.

20.
J Am Chem Soc ; 144(20): 8951-8960, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35536652

RESUMO

Aqueous solutions of polyoxometalates (POMs) have been shown to have potential as high-capacity energy storage materials due to their potential for multi-electron redox processes, yet the mechanism of reduction and practical limits are currently unknown. Herein, we explore the mechanism of multi-electron redox processes that allow the highly reduced POM clusters of the form {MO3}y to absorb y electrons in aqueous solution, focusing mechanistically on the Wells-Dawson structure X6[P2W18O62], which comprises 18 metal centers and can uptake up to 18 electrons reversibly (y = 18) per cluster in aqueous solution when the countercations are lithium. This unconventional redox activity is rationalized by density functional theory, molecular dynamics simulations, UV-vis, electron paramagnetic resonance spectroscopy, and small-angle X-ray scattering spectra. These data point to a new phenomenon showing that cluster protonation and aggregation allow the formation of highly electron-rich meta-stable systems in aqueous solution, which produce H2 when the solution is diluted. Finally, we show that this understanding is transferrable to other salts of [P5W30O110]15- and [P8W48O184]40- anions, which can be charged to 23 and 27 electrons per cluster, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...