Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 88(1): e202200449, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36680302

RESUMO

Herein is delineated a first systematic framework for the definition of structure-antioxidant property relationships in the dihydroxynaphthalene (DHN) series. The results obtained by a combined experimental and theoretical approach revealed that 1,8-DHN is the best performing antioxidant platform, with its unique hydrogen-bonded peri-hydroxylation pattern contributing to a fast H atom transfer process. Moreover, the comparative analysis of the antioxidant properties of DHNs carried out by performing DPPH and FRAP assays and laser flash photolysis experiments, revealed the higher antioxidant power associated with an α-substitution pattern (i. e. in 1,8- and 1,6-DHN) with respect to DHNs exhibiting a ß-substitution pattern (i. e. in 2,6- and 2,7-DHN). DFT calculations and isolation and characterization of the main oligomer intermediates formed during the oxidative polymerization of DHNs supported this evidence by providing unprecedented insight into the generation and fate of the intermediate naphthoxyl radicals, which emerged as the main factor governing the antioxidant activity of DHNs.


Assuntos
Antioxidantes , Naftalenos , Antioxidantes/química , Oxirredução
2.
Sci Rep ; 12(1): 11436, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794122

RESUMO

The design of modern devices that can fulfil the requirements for sustainability and renewable energy applications calls for both new materials and a better understanding of the mixing of existing materials. Among those, surely organic-inorganic hybrids are gaining increasing attention due to the wide possibility to tailor their properties by accurate structural design and materials choice. In this work, we'll describe the tight interplay between porous Si and two melanic polymers permeating the pores. Melanins are a class of biopolymers, known to cause pigmentation in many living species, that shows very interesting potential applications in a wide variety of fields. Given the complexity of the polymerization process beyond the formation and structure, the full understanding of the melanins' properties remains a challenging task. In this study, the use of a melanin/porous Si hybrid as a tool to characterize the polymer's properties within mesopores gives new insights into the conduction mechanisms of melanins. We demonstrate the dramatic effect induced on these mechanisms in a confined environment by the presence of a thick interface. In previous studies, we already showed that the interactions at the interface between porous Si and eumelanin play a key role in determining the final properties of composite materials. Here, thanks to a careful monitoring of the photoconductivity properties of porous Si filled with melanins obtained by ammonia-induced solid-state polymerization (AISSP) of 5,6-dihydroxyindole (DHI) or 1,8-dihydroxynaphthalene (DHN), we investigate the effect of wet, dry, and vacuum cycles of storage from the freshly prepared samples to months-old samples. A computational study on the mobility of water molecules within a melanin polymer is also presented to complete the understanding of the experimental data. Our results demonstrate that: (a) the hydration-dependent behavior of melanins is recovered in large pores (≈ 60 nm diameter) while is almost absent in thinner pores (≈ 20 nm diameter); (b) DHN-melanin materials can generate higher photocurrents and proved to be stable for several weeks and more sensitive to the wet/dry variations.


Assuntos
Melaninas , Polímeros , Biopolímeros , Melaninas/química , Polimerização , Porosidade
3.
J Colloid Interface Sci ; 624: 400-410, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35671617

RESUMO

HYPOTHESIS: The possibility to use hexamethylenediamine (HMDA) to impart film forming ability to natural polymers including eumelanins and plant polyphenols endowed with biological activity and functional properties has been recently explored with the aim to broaden the potential of polydopamine (PDA)-based films overcoming their inherent limitations. 5,6-dihydroxyindole-2-carboxylic acid, its methyl ester (MeDHICA) and eumelanins thereof were shown to exhibit potent reducing activity. EXPERIMENTS: MeDHICA and HMDA were reacted in aqueous buffer, pH 9.0 in the presence of different substrates to assess the film forming ability. The effect of different reaction parameters (pH, diamine chain length) on film formation was investigated. Voltammetric and AFM /SEM methods were applied for analysis of the film redox activity and morphology. HPLC, MALDI-MS and 1HNMR were used for chemical characterization. The film reducing activity was evaluated in comparison with PDA by chemical assays and using UV stressed human immortalized keratinocytes (HaCat) cells model. FINDINGS: Regular and homogeneous yellowish films were obtained with moderately hydrophobic properties. Film deposition was optimal at pH 9, and specifically induced by HMDA. The film consisted of HMDA and monomeric MeDHICA accompanied by dimers/small oligomers, but no detectable MeDHICA/HMDA covalent conjugation products. Spontaneous assembly of self-organized networks held together mainly by electrostatic interactions of MeDHICA in the anion form and HMDA as the dication is proposed as film deposition mechanism. The film displayed potent reducing properties and exerted significant protective effects from oxidative stress on HaCaT.


Assuntos
Indóis , Polímeros , Humanos , Indóis/química , Indóis/farmacologia , Oxirredução , Polímeros/química , Polímeros/farmacologia , Tecnologia
5.
J Org Chem ; 87(7): 4580-4589, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35266705

RESUMO

The addition of thiol compounds to o-quinones, as exemplified by the biologically relevant conjugation of cysteine to dopaquinone, displays an anomalous 1,6-type regiochemistry compared to the usual 1,4-nucleophilic addition, for example, by amines, which has so far eluded intensive investigations. By means of an integrated experimental and computational approach, herein, we provide evidence that the addition of glutathione, cysteine, or benzenethiol to 4-methyl-o-benzoquinone, modeling dopaquinone, proceeds by a free radical chain mechanism triggered by the addition of thiyl radicals to the o-quinone. In support of this conclusion, DFT calculations consistently predicted the correct regiochemistry only for the proposed thiyl radical-quinone addition pathway. These results would prompt a revision of the commonly accepted mechanisms for thiol-o-quinone conjugation and stimulate further work aimed at assessing the impact of the free radical processes in biologically relevant thiol-quinone interactions.


Assuntos
Quinonas , Compostos de Sulfidrila , Cisteína/química , Radicais Livres , Glutationa/química , Quinonas/química , Compostos de Sulfidrila/química
6.
J Colloid Interface Sci ; 606(Pt 2): 1779-1791, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507169

RESUMO

Halloysite nanotubes (HNTs) represent a versatile core structure for the design of functional nanosystems of biomedical interest. However, the development of selective methodologies for the site-controlled functionalization of the nanotubes at specific sites is not an easy task. This study aims to accomplish a procedure for the site-selective/specific, "pin-point", functionalization of HNTs with polydopamine (HNTs@PDA). This goal was achieved, at pH 6.5, by exploiting the basicity of ZnO nanoparticles anchored on the HNTs external surface (HNTs@ZnO) to induce a punctual polydopamine polymerization and coating. The morphology and the chemical composition of the nanomaterial was demonstrated by several techniques. Turbidimetric analysis showed that PDA coating affected the aqueous stability of HNTs@PDA compared to both HNTs@ZnO and HNTs. Notably, hyperthermia studies revealed that the nanomaterial induced a local thermic rise, up to 50 °C, under near-infrared (NIR) irradiation. Furthermore, secondary functionalization of HNTs@PDA by selective grafting of biotin onto the PDA coating followed by avidin binding was also accomplished.


Assuntos
Nanotubos , Polímeros , Argila , Indóis
7.
Food Chem ; 373(Pt B): 131474, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34731814

RESUMO

Reported herein is the purification of the pigment of black sturgeon caviar and its unambiguous identification as a typical eumelanin by means of chemical degradation coupled with electron paramagnetic resonance (EPR) evidence. HPLC and LC-MS analysis of oxidative degradation mixtures revealed the formation of pyrrole-2,3,5-tricarboxylic acid (PTCA), a specific marker of eumelanin pigments, in yields compatible with a 6.5% w/w pigment content. EPR spectral features and parameters were in close agreement with those reported for a typical natural eumelanin such as Sepia melanin from squid ink. The identification for the first time of eumelanin in a fish roe is expected to provide a novel molecular basis for the valorization of black caviar and production wastes thereof in food chemistry and diet.


Assuntos
Melaninas , Pigmentação , Animais , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
8.
Phys Life Rev ; 37: 65-93, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33774429

RESUMO

An interdisciplinary review of the chemical literature that points to a unifying scenario for the origin of life, referred to as the Primordial Multifunctional organic Entity (PriME) scenario, is provided herein. In the PriME scenario it is suggested that the Insoluble Organic Matter (IOM) in carbonaceous chondrites, as well as interplanetary dust particles from meteorites and comets may have played an important role in the three most critical processes involved in the origin of life, namely 1) metabolism, via a) the provision and accumulation of molecules that are the building blocks of life, b) catalysis (e.g., by templation), and c) protection of developing life molecules against radiation by excited state deactivation; 2) compartmentalization, via adsorption of compounds on the exposed organic surfaces in fractured meteorites, and 3) replication, via deaggregation, desorption and related physical phenomena. This scenario is based on the hitherto overlooked structural and physicochemical similarities between the IOM and the dark, insoluble, multifunctional melanin polymers found in bacteria and fungi and associated with the ability of these microorganisms to survive extreme conditions, including ionizing radiation. The underlying conceptual link between these two materials is strengthened by the fact that primary precursors of bacterial and fungal melanins (collectively referred to herein as allomelanins) are hydroxylated aromatic compounds like homogentisic acid and 1,8-dihydroxynaphthalene, and that similar hydroxylated aromatic compounds, including hydroxynaphthalenes, figure prominently among possible components of the organic materials on dust grains and ices in the interstellar matter, and may be involved in the formation of IOM in meteorites. Inspired by this rationale, a vis-à-vis review of the properties of IOM from various chondrites and non-nitrogenous allomelanin pigments from bacteria and fungi is provided herein. The unrecognized similarities between these materials may pave the way for a novel scenario at the origin of life, in which IOM-related complex organic polymers delivered to the early Earth are proposed to serve as PriME and were preserved and transformed in those primitive forms of life that shared the ability to synthesize melanin polymers playing an important role in the critical processes underlying the establishment of terrestrial eukaryotes.


Assuntos
Meteoroides , Poeira Cósmica/análise , Planeta Terra , Melaninas , Compostos Orgânicos/análise , Origem da Vida
9.
Phys Chem Chem Phys ; 22(46): 27105-27120, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33225336

RESUMO

The interaction potential energy surfaces (IPESs) of four alkaline metal cations (Na+, K+, Rb+ and Cs+) complexed with phenol and catechol were explored by accurate ab initio calculations to investigate the interplay of different noncovalent interactions and their behavior along the alkali metal series and upon -OH substitution. Selected one-dimensional interaction energy curves revealed two different minimum energy configurations for all phenol- and catechol-metal complexes, characterized either by cation-π or σ-type interactions. For each investigated complex several two-dimensional IPES maps were also computed, exploiting the computational advantages of the MP2mod approach. The size of the alkali cation was found to play a similar role in modulating both kinds of complexes, as the interaction strength always decreases along the metal series, from Na+ to Cs+. Conversely, the number of hydroxyl substituents markedly affected cation-π complexes vs. σ-type ones. As a most relevant finding, in catechol-metal complexes the strength of cation-π interactions is around half that of the σ-type ones. It is argued that the combined effect of cation dimensions and hydroxyl substitution in catechol-Na+ complexes makes σ-type configurations remarkably more stable and easily accessible than cation-π ones. Besides shedding new light on the origin of biological phenomena connected with underwater adhesion, the quantum mechanical interaction energy database provided herein may offer a useful reference for tuning accurate force fields, suitable for molecular dynamics simulations, where environmental effects might be also taken into account.

10.
Polymers (Basel) ; 12(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143251

RESUMO

Phenolic polymers produced by enzymatic oxidation under biomimetic and eco-friendly reaction conditions are usually endowed with potent antioxidant properties. These properties, coupled with the higher biocompatibility, stability and processability compared to low-molecular weight phenolic compounds, open important perspectives for various applications. Herein, we report the marked boosting effect of acid treatment on the antioxidant properties of a series of polymers obtained by peroxidase-catalyzed oxidation of natural phenolic compounds. Both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated a remarkable increase in the antioxidant properties for most phenolic polymers further to the acid treatment. In particular, up to a ca. 60% decrease in the EC50 value in the DPPH assay and a 5-fold increase in the Trolox equivalents were observed. Nitric oxide- and superoxide-scavenging assays also indicated highly specific boosting effects of the acid treatment. Spectroscopic evidence suggested, in most cases, that the occurrence of structural modifications induced by the acid treatment led to more extended π-electron-conjugated species endowed with more efficient electron transfer properties. These results open new perspectives toward the design of new bioinspired antioxidants for application in food, biomedicine and material sciences.

11.
Antioxidants (Basel) ; 9(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878314

RESUMO

Tannins have always been the subject of great interest for their countless properties, first of all their ability to produce functional coatings on a variety of materials. We report herein a comparative evaluation of the antioxidant properties of wood tannin-based coated substrates. In particular, nylon membrane filters were functionalized with chestnut (hydrolyzable) or quebracho (condensed) tannins by dip coating under different conditions. The efficiency of functionalization was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays, which invariably highlighted the superior ability of condensed tannins to induce the formation of a functional and robust coating. The results of the antioxidant assays revealed also the deleterious effects of aerial or enzymatic oxidation conditions on substrate functionalization, being more significant in the case of hydrolyzable tannins. On the other hand, the use of oxidizing conditions allowed to obtain more stable coatings, still exhibiting good antioxidant properties, in the case of condensed tannins. The presence of iron ions did not lead to a significant improvement of the coating efficiency for either tannins. The systematic approach used in this work provides novel and useful information for the optimal exploitation of tannins in antioxidant functional coatings.

12.
Molecules ; 25(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32839420

RESUMO

A new red hair-inspired 1,4-benzothiazine-based scaffold is disclosed herein, built upon a modular D-π-A architecture via condensation of the easily accessible 3-phenyl-2H-1,4-benzothiazine with indole-3-carboxaldehyde. The compound was obtained in around 50% yields and was characterized by complete spectroscopic analysis. The new benzothiazine-based cyanine displayed a characteristic reversible acidichromic behavior with a marked bathochromic shift upon acidification. The chromophore resisted at least fifteen hydrochloric acid/sodium hydroxide cycles without appreciable alterations. The expedient and scalable synthetic procedure together with the pH sensitive chromophoric properties would make the new compound an attractive prototype for novel modular chromophore for pH-sensing and other applications.


Assuntos
Corantes/química , Corantes/síntese química , Quinolinas/química , Quinolinas/síntese química
13.
Chemistry ; 26(65): 14919-14928, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32846019

RESUMO

Formation and structural modification of oxygenated polycyclic aromatic hydrocarbons (oxyPAHs) by UV irradiation on minerals have recently been proposed as a possible channel of PAH transformation in astrochemical and prebiotic scenarios of possible relevance for the origin of life. Herein, it is demonstrated that high-energy proton-beam irradiation in the presence of various meteorites, including stony iron, achondrite, and chondrite types, promotes the conversion of two representative oxyPAH compounds, 1-naphthol and 1,8-dihydroxynaphthalene, to complex mixtures of oxygenated and oligomeric derivatives. The main identified products include polyhydroxy derivatives, isomeric dimers encompassing benzofuran and benzopyran scaffolds, and, notably, a range of quinones and perylene derivatives. Addition of urea, a prebiotically relevant chemical precursor, expanded the range of identified species to include, among others, quinone diimines. Proton-beam irradiation of oxyPAH modulated by nitrogen-containing compounds such as urea is proposed as a possible contributory mechanism for the formation and processing of insoluble organic matter in meteorites and in prebiotic processes.

14.
Nanomaterials (Basel) ; 10(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756369

RESUMO

Melanins are a group of dark insoluble pigments found widespread in nature. In mammals, the brown-black eumelanins and the reddish-yellow pheomelanins are the main determinants of skin, hair, and eye pigmentation and play a significant role in photoprotection as well as in many biological functions ensuring homeostasis. Due to their broad-spectrum light absorption, radical scavenging, electric conductivity, and paramagnetic behavior, eumelanins are widely studied in the biomedical field. The continuing advancements in the development of biomimetic design strategies offer novel opportunities toward specifically engineered multifunctional biomaterials for regenerative medicine. Melanin and melanin-like coatings have been shown to increase cell attachment and proliferation on different substrates and to promote and ameliorate skin, bone, and nerve defect healing in several in vivo models. Herein, the state of the art and future perspectives of melanins as promising bioinspired platforms for natural regeneration processes are highlighted and discussed.

15.
J Org Chem ; 85(17): 11440-11448, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32842740

RESUMO

The mechanism of the acid-dependent interring dehydrogenation in the conversion of the single-bonded 3-phenyl-2H-1,4-benzothiazine dimer 2 to the Δ2,2'-bi(2H-1,4-benzothiazine) scaffold of red hair pigments is disclosed herein. Integrated chemical oxidation and oxygen consumption experiments, coupled with electron paramagnetic resonance (EPR) analyses and DFT calculations, allowed the identification of a key diprotonated free-radical intermediate, which was implicated in a remarkable oxygen-dependent chain process via peroxyl radical formation and evolution to give the Δ2,2'-bi(2H-1,4-benzothiazine) dimer 3 by interring dehydrogenation. The critical requirement for strongly acidic conditions was rationalized for the first time by the differential evolution channels of isomeric peroxyl radical intermediates at the 2- versus 3-positions. These results offer for the first time a rationale to expand the synthetic scope of the double interring dehydrogenation pathway for the preparation of novel symmetric double-bond bridged captodative heterocycles.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32733871

RESUMO

Bioconjugation of a recently developed photoacoustic nanoprobe, based on silica-templated eumelanin-silver hybrid nanoparticles (MelaSil_Ag-NPs), with human serum albumin (HSA) is disclosed herein as an efficient and practical strategy to improve photostability and to perform SPARC mediated internalization in breast cancer cells. Modification of NPs with HSA induced a slight viability decrease in breast cancer cells (HS578T) and normal breast cells (MCF10a) when incubated with HSA-NPs up to 100 µg/mL concentration for 72 h and a complete suppression of hemotoxicity for long incubation times. Uptake experiments with MelaSil_Ag-HSA NPs indicated very high and selective internalization via SPARC in HS578T (SPARC positive cells) but not in MCF10a (SPARC negative cells), as evaluated by using endocytosis inhibitors. The binding of SPARC to HSA was confirmed by Co-IP and Dot-blot assays. Additional studies were performed to analyze the interaction of MelaSil_Ag-HSA NPs with protein corona. Data showed a dramatic diminution of interacting proteins in HSA conjugated NPs compared to bare NPs. HSA-coated MelaSil_Ag-NPs are thus disclosed as a novel functional nanohybrid for potential photoacoustic imaging applications.

17.
Int J Mol Sci ; 21(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664213

RESUMO

The tyrosinase-catalyzed oxidation of tyramine, leading to the deposition of pseudo-polydopamine (ψ-PDA) thin films, is disclosed herein as a superior technology for surface functionalization and coating at a neutral pH and at a low substrate concentration, compared to the standard autoxidative PDA coating protocols. Smooth ψ-PDA thin films of variable thickness up to 87 nm were obtained from 1 mM tyramine by varying tyrosinase concentrations (5-100 U/mL). Compared to the PDA films obtained by the similar enzymatic oxidation of 1 mM dopamine with tyrosinase (T-PDA), ψ-PDA displayed slower deposition kinetics, lower water contact angles in the range of 11°-28°, denoting higher hydrophilicity but similar UV-vis absorption profiles, as well as electrochemical properties and antioxidant activity. MALDI-MS analysis indicated for ψ-PDA a well defined pattern of peaks compatible with dopamine tetrameric structures degraded to a variable extent. The exposure to a tyramine solution of tyrosinase-loaded alginate spheres, or films deposited on glass or polyethylene, resulted in a rapid gel-confined ψ-PDA formation with no leakage or darkening of the solution, allowing the complete recovery and re-utilization of the unreacted tyramine. In contrast, an abundant PDA precipitation outside the gel was observed with dopamine under the same conditions. The ψ-PDA deposition by tyrosinase-catalyzed tyramine oxidation is thus proposed as a controllable and low-waste technology for selective surface functionalization and coating or for clean eumelanin particle production.


Assuntos
Indóis/química , Polímeros/química , Tecnologia/métodos , Tiramina/química , Antioxidantes/química , Catálise , Dopamina/química , Vidro/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Monofenol Mono-Oxigenase/química , Oxirredução , Polietileno/química , Propriedades de Superfície
18.
J Mater Chem B ; 8(20): 4412-4418, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32373902

RESUMO

The fungal pathways of melanin synthesis have so far been little considered as a source of bio-inspiration in the field of functional materials, despite the interesting properties exhibited by Ascomycetes melanins from 1,8-dihydroxynaphthalene (1,8-DHN), including the ability to shield organisms from ionizing radiation. Herein, the processing techniques and characterizations of mycomelanin thin films obtained from the solid state polymerization of 1,8-DHN is reported for the first time. Overall, the results highlighted the role of synthetic mycomelanin thin films as a prototype of next generation bioinspired interfaces featuring high structural regularity and ultrasmooth morphology, high robustness against peroxidative bleaching and adhesion under water conditions, good biocompatibility and unprecedented effects in inducing the spontaneous differentiation of embryonic stem cells prevalently towards the endodermal lineages in the absence of added factors. These data open up new avenues towards the applications of this biomaterial in the fields of tissue engineering and regenerative medicine.


Assuntos
Ascomicetos/química , Materiais Biocompatíveis/química , Células-Tronco Embrionárias/citologia , Melaninas/química , Naftóis/química , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Células HEK293 , Humanos , Camundongos , Polimerização , Engenharia Tecidual
19.
Antioxidants (Basel) ; 9(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443466

RESUMO

Largely produced agri-food byproducts represent a sustainable and easily available source of phenolic compounds, such as lignins and tannins, endowed with potent antioxidant properties. We report herein the characterization of the antioxidant properties of nine plant-derived byproducts. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated the superior activity of pomegranate peels and seeds, grape pomace and pecan nut shell. An increase in the antioxidant potency was observed for most of the waste materials following a hydrolytic treatment, with the exception of the condensed tannin-rich pecan nut shell and grape pomace. UV-Vis and HPLC investigation of the soluble fractions coupled with the results from IR analysis and chemical degradation approaches on the whole materials allowed to conclude that the improvement of the antioxidant properties was due not only to removal of non-active components (mainly carbohydrates), but also to structural modifications of the phenolic compounds. Parallel experiments run on natural and bioinspired model phenolic polymers suggested that these structural modifications positively impacted on the antioxidant properties of lignins and hydrolyzable tannins, whereas significant degradation of condensed tannin moieties occurred, likely responsible for the lowering of the reducing power observed for grape pomace and pecan nut shell. These results open new perspectives toward the exploitation and manipulation of agri-food byproducts for application as antioxidant additives in functional materials.

20.
J Phys Chem A ; 124(17): 3445-3459, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32271571

RESUMO

The reliability of several density functional theory (DFT) functionals and of the Möller-Plesset second-order perturbation theory calculations with modified basis sets (mp2mod) approach in describing cation-π interactions is systematically investigated by benchmarking their performances with respect to high quality reference CCSD(T) calculations of the binding energies between alkaline cations of varying radius (Na+, K+, Rb+, and Cs+) and three aromatic species (benzene, phenol, and catechol). For this class of noncovalent interaction, mp2mod delivers, on average, results in very good agreement with the reference CCSD(T) data, yet at a very small computational cost, exploiting the reduced dimensions of the modified basis set. Conversely, the tested DFT functionals show a more erratic behavior, with different performances depending on both the investigated system and the combination of the employed functional and basis set. The mp2mod computational convenience is further exploited to extensively sample two-dimensional interaction energy surfaces of all investigated cation-π systems, which allow for a deeper insight on the effect of the increasing number of hydroxyl substituents, revealing the insurgence, upon substitution, of alternative minima, evident in particular for the smaller cations. The present results strongly support for further applications of the mp2mod method to study a larger variety of aromatic/metal cation species, relevant both in biological processes and in technological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...