Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(30): 21668-21681, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38979468

RESUMO

Novel phthalazine derivatives were designed, synthesized and evaluated against Hep G2 and MCF-7 as VEGFR-2 inhibitors. In particular, compounds 2g and 4a were found to be the most potent derivatives among all the tested compounds against MCF-7 and Hep G2 cancer cell lines with IC50 values of 0.15 and 0.12 and 0.18 and 0.09 µM respectively. Moreover, compounds 3a, 3c, 5a and 5b displayed excellent anticancer activities against MCF-7 and Hep G2 cancer cell lines. The highly active derivatives 2g, 3a, 3c, 4a, 5a and 5b were evaluated for their inhibitory activities against VEGFR-2. The tested compounds displayed high to low inhibitory activities with IC50 values ranging from 0.148 to 0.892 µM. Among them, compounds 2g and 4a were found to be the most potent derivatives that inhibited VEGFR-2 with IC50 values of 0.148 and 0.196 µM respectively. Compounds 3a, 3c, 5a and 5b exhibited good activity with IC50 values of 0.375, 0.892, 0.548 and 0.331 µM respectively. Sorafenib was used as a reference drug in this study. Molecular modeling studies were carried out for all compounds against the VEGFR-2 active site. The data obtained from biological testing highly correlated with those obtained from molecular modeling studies. Moreover, MD simulation results indicated the stability of ligand-target interaction. Furthermore, our derivatives 2g and 4a showed a good in silico calculated ADMET profile.

2.
Med Chem ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38798211

RESUMO

BACKGROUND: Vascular endothelial growth factor receptor-2 (VEGFR-2) is a critical protein involved in tumor progression, making it an attractive target for cancer therapy. OBJECTIVE: This study aimed to synthesize and evaluate novel thieno[2,3-d]pyrimidine analogues as potential anticancer VEGFR-2 inhibitors. METHODS: The thieno[2,3-d]pyrimidine analogues were synthesized following the pharmacophoric features of VEGFR-2 inhibitors. The anticancer potential was assessed against PC3 and HepG2 cell lines. The VEGFR-2 inhibition was evaluated through IC50 determination. Cell cycle analysis and apoptosis assays were performed to elucidate the mechanisms of action. Molecular docking, molecular dynamics simulations, MM-GBSA, and PLIP studies were conducted to investigate the binding affinities and interactions with VEGFR-2. Additionally, in silico ADMET studies were performed. RESULTS: Compound 8b demonstrated significant anti-proliferative activities with IC50 values of 16.35 µM and 8.24 µM against PC3 and HepG2 cell lines, respectively, surpassing sorafenib and exhibiting enhanced selectivity indices. Furthermore, compound 8b showed an IC50 value of 73 nM for VEGFR-2 inhibition. Cell cycle analysis revealed G2-M phase arrest, while apoptosis assays demonstrated increased apoptosis in HepG2 cells. Molecular docking and dynamic simulations confirmed the binding affinity and interaction of compound 8b with VEGFR-2, supported by MMGBSA and PLIP studies. In silico ADMET studies indicated the drug development potential of the synthesized thieno[2,3-d]pyrimidines. CONCLUSION: The study highlights compound 8b as a promising VEGFR-2 inhibitor with potent anti-proliferative activities. Its mechanism of action involves cell cycle arrest and induction of apoptosis. Further, molecular docking and dynamic simulations support the strong binding affinity of compound 8b to VEGFR-2.

3.
Biochim Biophys Acta Gen Subj ; 1868(6): 130599, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521471

RESUMO

BACKGROUND: VEGFR-2 has emerged as a prominent positive regulator of cancer progression. AIM: Discovery of new anticancer agents and apoptotic inducers targeting VEGFR-2. METHODS: Design and synthesis of new thiazolidine-2,4-diones followed by extensive in vitro studies, including VEGFR-2 inhibition assay, MTT assay, apoptosis analysis, and cell migration assay. In silico investigations including docking, MD simulations, ADMET, toxicity, and DFT studies were performed. RESULTS: Compound 15 showed the strongest VEGFR-2 inhibitory activity with an IC50 value of 0.066 µM. Additionally, most of the synthesized compounds showed anti-proliferative activity against HepG2 and MCF-7 cancer cell lines at the micromolar range with IC50 values ranging from 0.04 to 4.71 µM, relative to sorafenib (IC50 = 2.24 ± 0.06 and 3.17 ± 0.01 µM against HepG2 and MCF-7, respectively). Also, compound 15 showed selectivity indices of 1.36 and 2.08 against HepG2 and MCF-7, respectively. Furthermore, compound 15 showed a significant apoptotic effect and arrested the cell cycle of MCF-7 cells at the S phase. Moreover, compound 15 had a significant inhibitory effect on the ability of MCF-7 cells to heal from. Docking studies revealed that the synthesized thiazolidine-2,4-diones have a binding pattern approaching sorafenib. MD simulations indicated the stability of compound 15 in the active pocket of VEGFR-2 for 200 ns. ADMET and toxicity studies indicated an acceptable pharmacokinetic profile. DFT studies confirmed the ability of compound 15 to interact with VEGFR-2. CONCLUSION: Compound 15 has promising anticancer activity targeting VEGFR-2 with significant activity as an apoptosis inducer.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Desenho de Fármacos , Simulação de Acoplamento Molecular , Tiazolidinedionas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Tiazolidinedionas/química , Tiazolidinedionas/síntese química , Células MCF-7 , Células Hep G2 , Proliferação de Células/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Ensaios de Seleção de Medicamentos Antitumorais , Sorafenibe/farmacologia , Sorafenibe/química , Simulação de Dinâmica Molecular , Movimento Celular/efeitos dos fármacos
4.
Heliyon ; 10(2): e24005, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298627

RESUMO

In this study, a series of seven novel 2,4-dioxothiazolidine derivatives with potential anticancer and VEGFR-2 inhibiting abilities were designed and synthesized as VEGFR-2 inhibitors. The synthesized compounds were tested in vitro for their potential to inhibit VEGFR-2 and the growth of HepG2 and MCF-7 cancer cell lines. Among the compounds tested, compound 22 (IC50 = 0.079 µM) demonstrated the highest anti-VEGFR-2 efficacy. Furthermore, it demonstrated significant anti-proliferative activities against HepG2 (IC50 = 2.04 ± 0.06 µM) and MCF-7 (IC50 = 1.21 ± 0.04 M). Additionally, compound 22 also increased the total apoptotic rate of the MCF-7 cancer cell lines with cell cycle arrest at S phase. As well, computational methods were applied to study the VEGFR-2-22 complex at the molecular level. Molecular docking and molecular dynamics (MD) simulations were used to investigate the complex's structural and kinetic characteristics. The DFT calculations further revealed the structural and electronic properties of compound 22. Finally, computational ADMET and toxicity tests were performed indicating the likeness of the proposed compounds to be drugs. The results suggest that compound 22 displays promise as an effective anticancer treatment and can serve as a model for future structural modifications and biological investigations in this field.

5.
J Biomol Struct Dyn ; 42(5): 2369-2391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37129193

RESUMO

Depending on the pharmacophoric characteristics of EGFR inhibitors, a new thieno[2,3-d]pyrimidine derivative has been developed. Firstly, the potential inhibitory effect of the designed compound against EGFR has been proven by docking experiments that showed correct binding modes and excellent binding energies of -98.44 and -88.00 kcal/mol, against EGFR wild-type and mutant type, respectively. Furthermore, MD simulations studies confirmed the precise energetic, conformational, and dynamic alterations that occurred after binding to EGFR. The correct binding was also confirmed by essential dynamics studies. To further investigate the general drug-like properties of the developed candidate, in silico ADME and toxicity studies have also been carried out. The thieno[2,3-d]pyrimidine derivative was synthesized following the earlier promising findings. Fascinatingly, the synthesized compound (4) showed promising inhibitory effects against EGFRWT and EGFRT790M with IC50 values of 25.8 and 182.3 nM, respectively. Also, it exhibited anticancer potentialities against A549 and MCF-7cell lines with IC50 values of 13.06 and 20.13 µM, respectively. Interestingly, these strong activities were combined with selectivity indices of 2.8 and 1.8 against the two cancer cell lines, respectively. Further investigations indicated the ability of compound 4 to arrest the cancer cells' growth at the G2/M phase and to increase early and late apoptosis percentages from 2.52% and 2.80 to 17.99% and 16.72%, respectively. Additionally, it was observed that compound 4 markedly increased the levels of caspase-3 and caspase-9 by 4 and 3-fold compared to the control cells. Moreover, it up-regulated the level of BAX by 3-fold and down-regulated the level of Bcl-2 by 3-fold affording a BAX/Bcl-2 ratio of 9.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Receptores ErbB , Pirimidinas , Humanos , Antineoplásicos/química , Proteína X Associada a bcl-2 , Proliferação de Células , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases/química , Pirimidinas/farmacologia , Pirimidinas/química , Ribose/farmacologia , Relação Estrutura-Atividade
6.
RSC Adv ; 13(40): 27801-27827, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37731835

RESUMO

In this study, novel VEGFR-2-targeting thiazolidine-2,4-dione derivatives with potential anticancer properties were designed and synthesized. The ability of the designed derivatives to inhibit VEGFR-2 and stop the growth of three different cancer cell types (HT-29, A-549, and HCT-116) was examined in vitro. The IC50 value of compound 15, 0.081 µM, demonstrated the best anti-VEGFR-2 potency. Additionally, compound 15 showed remarkable anti-proliferative activities against the tested cancer cell lines, with IC50 values ranging from 13.56 to 17.8 µM. Additional flow cytometric investigations showed that compound 15 increased apoptosis in HT-29 cancer cells (from 3.1% to 31.4%) arresting their growth in the S phase. Furthermore, compound 15's apoptosis induction in the same cell line was confirmed by increasing the levels of BAX (4.8-fold) and decreasing Bcl-2 (2.8-fold). Also, compound 15 noticeably increased caspase-8 and caspase-9 levels by 1.7 and 3.2-fold, respectively. Computational methods were used to perform molecular analysis of the VEGFR-2-15 complex. Molecular dynamics simulations and molecular docking were utilized to analyze the complex's kinetic and structural characteristics. Protein-ligand interaction profiler analysis (PLIP) determined the 3D interactions and binding conformation of the VEGFR-2-15 complex. DFT analyses also provided insights into the 3D geometry, reactivity, and electronic characteristics of compound 15. Computational ADMET and toxicity experiments were conducted to determine the potential of the synthesized compounds for therapeutic development. The study's findings suggest that compound 15 might be an effective anticancer lead compound and could guide future attempts to develop new drugs.

7.
Comput Biol Chem ; 107: 107958, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37714080

RESUMO

Novel thiazolidine-2,4-dione derivatives, 11a-g, were designed, and synthesized targeting the VEGFR-2 protein. The in vitro studies indicated the abilities of the synthesized derivatives to inhibit VEGFR-2 and prevent the growth of two different cancer cell types, HepG2 and MCF-7. Compound 11 f exhibited the strongest anti-VEGFR-2 activity (IC50 = 0.053 µM). As well, compound 11 f showed impressive anti-proliferative activity against the mentioned cancer cell lines with IC50 values of 0.64 ± 0.01 and 0.53 ± 0.04 µM, respectively. Additionally, compound 11 f arrested the MCF-7 cell cycle at the S phase and increased the overall apoptosis percentage. Furthermore, cell migration assay revealed that compound 11 f has a significant ability to prevent migration and healing potentialities of MCF-7. Moreover, computational studies were used to conduct the molecular investigation of the VEGFR-2-11 f complex. The kinetic and structural features of the complex were examined using molecular dynamics simulations and molecular docking. Besides, Principal component analysis (PCA) was used to explain the dynamics of the VEGFR-2-11 f complex at various spatial scales. The DFT calculations also provided further clarity regarding compound 11 f's structural and electronic features. To evaluate how closely the developed compounds might look like drugs, ADMET and toxicity experiments were computed. To conclude, the presented study demonstrates the potential of compound 11 f as a viable anti-cancer drug, which can serve as a prototype for future structural modifications and further biological investigations.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Fosforilação , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Tiazolidinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
8.
Future Med Chem ; 15(13): 1167-1184, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37529910

RESUMO

Background: EGFR has been considered a vital molecular target in cancer management. Aim: The discovery of new thieno[2,3-d]pyrimidine derivatives as EGFR tyrosine kinase inhibitors. Methods: Nine derivatives were designed, synthesized and subjected to in vitro and in silico studies. Results: Compound 7a significantly inhibited the growth of HepG2 and PC3 cells for both EGFR wild-type and EGFRT790M. Compound 7a caused a significant apoptotic effect, arresting HepG2 cells' growth in the S and G2/M phases. Docking and molecular dynamics simulation studies confirmed the correct and stable binding modes of the synthesized compounds against the active sites. Conclusion: Compound 7a is a promising dual EGFR inhibitor for cancer treatment.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Relação Estrutura-Atividade , Receptores ErbB , Pirimidinas/farmacologia , Pirimidinas/química , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Mutação , Proliferação de Células , Simulação de Acoplamento Molecular , Estrutura Molecular , Linhagem Celular Tumoral
9.
Future Med Chem ; 15(14): 1233-1250, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37466069

RESUMO

Background: VEGFR-2 is one of the most effective targets in cancer treatment. Aim: The design and semi-synthesis of new theobromine derivatives as potential VEGFR-2 inhibitors. Methods: In vitro and in silico evaluation of the synthesized compounds. Results: Compound 5b demonstrated excellent antiproliferative and VEGFR-2 inhibitory effects with significant apoptotic activity. It modulated the immune response by increasing IL-2 and reducing TNF-α levels. Docking and molecular dynamics simulations revealed the compound's binding affinity with VEGFR-2. Lastly, computational absorption, distribution, metabolism, excretion and toxicity studies indicated the high potential of compound 5b for drug development. Conclusion: Compound 5b could be a promising anticancer agent targeting VEGFR-2.


Assuntos
Antineoplásicos , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Teobromina/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células , Antineoplásicos/química , Simulação de Acoplamento Molecular , Desenho de Fármacos
10.
J Enzyme Inhib Med Chem ; 38(1): 2220579, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37288786

RESUMO

A group of EGFR inhibitors derived from thieno[2,3-d]pyrimidine nucleus was designed, synthesised, and examined as anti-proliferative lead compounds. MCF-7 and A549 cell lines were inhibited by 5b, the most active member. It had inhibitory partialities of 37.19 and 204.10 nM against EGFRWT and EGFRT790M, respectively. Compound 5b was 2.5 times safer against the WI-38 normal cell lines than erlotinib. Also, it demonstrated considerable potentialities for both early and late apoptosis induction in A549. Simultaneously, 5b arrested A549's growth at G1 and G2/M phases. Harmoniously, 5b upregulated the BAX and downregulated the Bcl-2 genes by 3-fold and increased the BAX/Bcl-2 ratio by 8.3-fold comparing the untreated A549 cells. Molecular docking against EGFRWT and EGFRT790M indicated the correct binding modes. Furthermore, MD simulations confirmed the precise binding of 5b against the EGFR protein over 100 ns. Finally, various computational ADMET studies were carried out and indicated high degrees of drug-likeness and safety.


Assuntos
Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Humanos , Antineoplásicos/química , Proteína X Associada a bcl-2 , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Simulação de Acoplamento Molecular , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Relação Estrutura-Atividade
11.
J Biomol Struct Dyn ; : 1-20, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261471

RESUMO

Vascular endothelial cell proliferation and angiogenesis are all crucially impacted by Endothelial Growth Factor Receptor-2 (VEGFR-2). Its expression is significantly boosted throughout pathologic angiogenesis causing the development of tumors. Sothat, inhibition of VEGFR-2 has crucial role in cancer treatment. In this study, novel semisynthetic theobromine derivatives were rationally designed as VEGFR-2 inhibitors and subjected to in vitro testing for their ability to block VEGFR-2 activation. Furthermore, the antiproliferative effects of these derivatives were evaluated. Compound 7 g exhibited the most potent anti-VEGFR-2 activity, with an IC50 value of 0.072 µM, and demonstrated excellent dose-dependent inhibitory activity against both MCF-7 and HepG2 cancer cells with IC50 values of 19.35 and 27.89 µM, respectively. Notably, compound 7 g exhibited high selectivity indices of 2.6 and 1.8 against MCF-7 and HepG2 cells, respectively. Compound 7 g induced G2/M phase cell cycle arrest, promoted apoptosis, and boosted immunomodulation by downregulating TNF-α expression and upregulating IL-2 levels in MCF-7 cells. The molecular docking analysis revealed that compound 7 g could bind effectively to the active site of VEGFR-2, and molecular dynamic simulations confirmed the stability of the VEGFR-2/compound 7 g complex. Furthermore, ADME and toxicity profiling indicated the potential suitability of these compounds as drug candidates. In summary, compound 7 g hold promise as a VEGFR-2 inhibitor.Communicated by Ramaswamy H. Sarma.

12.
Drug Dev Res ; 84(6): 1247-1265, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37232504

RESUMO

Following the pharmacophoric features of vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitors, a novel thieno[2,3-d]pyrimidine derivative has been designed and its activity against VEGFR-2 has been demonstrated by molecular docking studies that showed an accurate binding mode and an excellent binding energy. Furthermore, the recorded binding was confirmed by a series of molecular dynamics simulation studies, which also revealed precise energetic, conformational, and dynamic changes. Additionally, molecular mechanics with generalized Born and surface area solvation and polymer-induced liquid precursors studies were conducted and verified the results of the MD simulations. Next, in silico absorption, distribution, metabolism, excretion, and toxicity studies have also been conducted to examine the general drug-like nature of the designed candidate. According to the previous results, the thieno[2,3-d]pyrimidine derivative was synthesized. Fascinatingly, it inhibited VEGFR-2 (IC50 = 68.13 nM) and demonstrated strong inhibitory activity toward human liver (HepG2), and prostate (PC3) cell lines with IC50 values of 6.60 and 11.25 µM, respectively. As well, it was safe and showed a high selectivity index against normal cell lines (WI-38). Finally, the thieno[2,3-d]pyrimidine derivative arrested the growth of the HepG2 cells at the G2/M phase inducing both early and late apoptosis. These results were further confirmed through the ability of the thieno[2,3-d]pyrimidine derivative to induce significant changes in the apoptotic genes levels of caspase-3, caspase-9, Bcl-2 associated X-protein, and B-cell lymphoma 2.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Fator A de Crescimento do Endotélio Vascular , Antineoplásicos/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Descoberta de Drogas , Pirimidinas/farmacologia , Pirimidinas/química
13.
J Org Chem ; 88(4): 2095-2102, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36749643

RESUMO

1,2,4-Triazinones are useful compounds, but their synthesis can be challenging. Herein, we report a strategy to build 1,2,4-triazinones using α-bromohydrazones to access diazadienes and exploiting their ability to undergo facile substitution with nitrogen nucleophiles. The N-isocyanate intermediate formed in situ can then undergo cyclization to give the desired triazinones. This provides access to products with various substituents at the 4-position, and with suitable hydrazone precursors (R2 = Ph), the cascade reaction yields 1,2,4-triazin-3(2H)-ones at room temperature.

14.
Molecules ; 27(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956997

RESUMO

This work is one of our efforts to discover potent anticancer agents. We modified the most promising derivative of our previous work concerned with the development of VEGFR-2 inhibitor candidates. Thirteen new compounds based on benzoxazole moiety were synthesized and evaluated against three human cancer cell lines, namely, breast cancer (MCF-7), colorectal carcinoma (HCT116), and hepatocellular carcinoma (HepG2). The synthesized compounds were also evaluated against VEGFR-2 kinase activity. The biological testing fallouts showed that compound 8d was more potent than standard sorafenib. Such compound showed IC50 values of 3.43, 2.79, and 2.43 µM against the aforementioned cancer cell lines, respectively, compared to IC50 values of 4.21, 5.30, and 3.40 µM reported for sorafenib. Compound 8d also was found to exert exceptional VEGFR-2 inhibition activity with an IC50 value of 0.0554 µM compared to sorafenib (0.0782 µM). In addition, compound 8h revealed excellent cytotoxic effects with IC50 values of 3.53, 2.94, and 2.76 µM against experienced cell lines, respectively. Furthermore, compounds 8a and 8e were found to inhibit VEGFR-2 kinase activity with IC50 values of 0.0579 and 0.0741 µM, exceeding that of sorafenib. Compound 8d showed a significant apoptotic effect and arrested the HepG2 cells at the pre-G1 phase. In addition, it exerted a significant inhibition for TNF-α (90.54%) and of IL-6 (92.19%) compared to dexamethasone (93.15%). The molecular docking studies showed that the binding pattern of the new compounds to VEGFR-2 kinase was similar to that of sorafenib.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Apoptose , Benzoxazóis/química , Proliferação de Células , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Sorafenibe/farmacologia , Relação Estrutura-Atividade
15.
J Enzyme Inhib Med Chem ; 37(1): 2191-2205, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35975321

RESUMO

New quinoline and isatin derivatives having the main characteristics of VEGFR-2 inhibitors was synthesised. The antiproliferative effects of these compounds were estimated against A549, Caco-2, HepG2, and MDA-MB-231. Compounds 13 and 14 showed comparable activities with doxorubicin against the Caco-2 cells. These compounds strongly inhibited VEGFR-2 kinase activity. The cytotoxic activities were evaluated against Vero cells. Compound 7 showed the highest value of safety and selectivity. Cell migration assay displayed the ability of compound 7 to prevent healing and migration abilities in the cancer cells. Furthermore, compound 7 induced apoptosis in Caco-2 through the expressive down-regulation of the apoptotic genes, Bcl2, Bcl-xl, and Survivin, and the upregulation of the TGF gene. Molecular docking against VEGFR-2 emerged the interactions of the synthesised compounds in a similar way to sorafenib. Additionally, seven molecular dynamics simulations studies were applied and confirmed the stability of compound 13 in the active pocket of VEGFR-2 over 100 ns.


Assuntos
Antineoplásicos , Isatina , Quinolinas , Animais , Antineoplásicos/farmacologia , Células CACO-2 , Proliferação de Células , Chlorocebus aethiops , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isatina/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Células Vero
16.
J Enzyme Inhib Med Chem ; 37(1): 2063-2077, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35875937

RESUMO

In this study, a set of novel benzoxazole derivatives were designed, synthesised, and biologically evaluated as potential VEGFR-2 inhibitors. Five compounds (12d, 12f, 12i, 12l, and 13a) displayed high growth inhibitory activities against HepG2 and MCF-7 cell lines and were further investigated for their VEGFR-2 inhibitory activities. The most potent anti-proliferative member 12 l (IC50 = 10.50 µM and 15.21 µM against HepG2 and MCF-7, respectively) had the most promising VEGFR-2 inhibitory activity (IC50 = 97.38 nM). A further biological evaluation revealed that compound 12l could arrest the HepG2 cell growth mainly at the Pre-G1 and G1 phases. Furthermore, compound 12l could induce apoptosis in HepG2 cells by 35.13%. likely, compound 12l exhibited a significant elevation in caspase-3 level (2.98-fold) and BAX (3.40-fold), and a significant reduction in Bcl-2 level (2.12-fold). Finally, docking studies indicated that 12l exhibited interactions with the key amino acids in a similar way to sorafenib.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Apoptose , Benzoxazóis , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade
17.
J Enzyme Inhib Med Chem ; 37(1): 1587-1599, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35637622

RESUMO

A novel series of 2-thioacetamide linked benzoxazole-benzamide conjugates 1-15 was designed as potential inhibitors of the vascular endothelial growth factor receptor-2 (VEGFR-2). The prepared compounds were evaluated for their potential antitumor activity and their corresponding selective cytotoxicity was estimated using normal human fibroblast (WI-38) cells. Compounds 1, 9-12 and 15 showed good selectivity and displayed excellent cytotoxic activity against both HCT-116 and MCF-7 cancer cell lines compared to sorafenib, used as a reference compound. Furthermore, compounds 1 and 11 showed potent VEGFR-2 inhibitory activity. The cell cycle progression assay showed that 1 and 11 induced cell cycle arrest at G2/M phase, with a concomitant increase in the pre-G1 cell population. Further pharmacological studies showed that 1 and 11 induced apoptosis and inhibited the expression of the anti-apoptotic Bcl-2 and Bcl-xL proteins in both cell lines. Therefore, compounds 1 and 11 might serve as promising candidates for future anticancer therapy development.


Assuntos
Benzoxazóis , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Apoptose , Benzamidas/farmacologia , Benzoxazóis/farmacologia , Desenho de Fármacos , Fibroblastos , Células HCT116 , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
18.
Exp Clin Transplant ; 20(Suppl 1): 69-73, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35384810

RESUMO

OBJECTIVES: Calcineurin inhibitors are the cornerstone of immunosuppression following solid-organ transplant. However, hyperkalemia may occur by multiple mechanisms affecting potassium in the distal tubule. Hyperkalemia is commonly observed in renal transplant recipients, and it is dose-dependent. Here, we evaluated the impact of fludrocortisone in the management of calcineurin inhibitor-induced hyperkalemia after renal transplant. MATERIALS AND METHODS: We evaluated newly transplanted patients who developed hyperkalemia or those with hyperkalemia who attended our outpatient renal transplant clinic (Hamed Al-Essa Organ Transplant Center, Kuwait). Clinical and laboratory parameters were collected before starting fludrocortisone (baseline values) and then at 1, 2, 4, and 8 weeks. Drug history was assessed, with any drugs that could induce hyperkalemia being discontinued (such as spironolactone); otherwise, essential drugs like prophylactic agents (sulfamethoxazole-trimethoprim) were maintained. Oral anti-hyperkalemic doses (bicarbonate, resonium calcium, fludrocortisone) were noted. RESULTS: Our study included 29 patients; most were men (aged 45.8 ± 15 years). Body weight did not significantly change after introduction of fludrocortisone (79.53 ± 24.31, 79.82 ± 23.85, 80.62 ± 24.24, 77.03 ± 20.7, and 79.21 ± 27.93 kg at baseline and at postdose week 1, 2, 4, and 8, respectively). Systolic and diastolic blood pressure levels were also similar at baseline versus postdose. Steroid doses (prednisolone) were significantly reduced over 1 month (15.7 ± 12.4, 14.1 ± 10.19, 12.6 ± 8.7, 9.5 ± 5.2, and 9.5 ± 5.2 mg/ day). Serum potassium levels significantly improved (5.18 ± 0.58, 4.9 ± 0.49, 4.8 ± 0.54, 4.8 ± 0.65, and 4.4 ± 0.72 mmol/L). Serum creatinine levels significantly improved by postdose week 8 (129.28 ± 48.9, 130.92 ± 52.2, 127.66 ± 50.9, 121.42 ± 41.7, and 124.1 ± 51.27 µmol/L). Serum bicarbonate levels remained similar. CONCLUSIONS: Fludrocortisone was a safe and effective option in management of calcineurin inhibitor-induced hyperkalemia among renal transplant recipients.


Assuntos
Hiperpotassemia , Transplante de Rim , Adulto , Bicarbonatos/efeitos adversos , Inibidores de Calcineurina/efeitos adversos , Fludrocortisona/efeitos adversos , Humanos , Hiperpotassemia/induzido quimicamente , Hiperpotassemia/diagnóstico , Transplante de Rim/efeitos adversos , Masculino , Pessoa de Meia-Idade , Potássio/efeitos adversos , Potássio/fisiologia , Resultado do Tratamento
19.
J Enzyme Inhib Med Chem ; 37(1): 397-410, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34961427

RESUMO

A new series of benzoxazole derivatives were designed and synthesised to have the main essential pharmacophoric features of VEGFR-2 inhibitors. Cytotoxic activities were evaluated for all derivatives against two human cancer cell lines, MCF-7 and HepG2. Also, the effect of the most cytotoxic derivatives on VEGFR-2 protein concentration was assessed by ELISA. Compounds 14o, 14l, and 14b showed the highest activities with VEGFR-2 protein concentrations of 586.3, 636.2, and 705.7 pg/ml, respectively. Additionally, the anti-angiogenic property of compound 14b against human umbilical vascular endothelial cell (HUVEC) was performed using a wound healing migration assay. Compound 14b reduced proliferation and migratory potential of HUVEC cells. Furthermore, compound 14b was subjected to further biological investigations including cell cycle and apoptosis analyses. Compound 14b arrested the HepG2 cell growth at the Pre-G1 phase and induced apoptosis by 16.52%, compared to 0.67% in the control (HepG2) cells. The effect of apoptosis was buttressed by a 4.8-fold increase in caspase-3 level compared to the control cells. Besides, different in silico docking studies were also performed to get better insights into the possible binding mode of the target compounds with VEGFR-2 active sites.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzoxazóis/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoxazóis/síntese química , Benzoxazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Bioorg Med Chem ; 46: 116384, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34479065

RESUMO

Tumor angiogenesis is mainly regulated by VEGFR-2. In this study, a new series of [1,2,4]triazolo[4,3-a]quinoxaline based-derivatives has been designed and synthesized to develop new anti-proliferative and anti-VEGFR-2 members. Anti-proliferative activities of the synthesized compounds were tested against MCF-7 and HepG2 cell lines. Compound 19a exhibited the highest activity towards both MCF-7 and HepG2 cell lines (IC50 = 8.2 and 5.4 µM, respectively), compared to sorafenib (IC50 = 3.51 and 2.17 µM, respectively). Additionally, all compounds were screened to evaluate their effect as VEGFR-2 inhibitors. Compound 19a (IC50 = 3.4 nM) exhibited good activity compared to sorafenib (IC50 = 3.12 nM). Furthermore, compound 19a disrupted the HepG2 cell cycle by arresting the G2/M phase. Also, marked increase in the percentage apoptotic cells was achieved by compound 19a. The induced apoptotic effect of compound 19a in HepG2 cells was assured by increased pro-apoptotic marker (Bax) expression by 2.33-fold and decreased anti-apoptotic (Bcl-2) expression by 1.88-fold, resulting in an elevation of the Bax/Bcl-2 ratio in HepG2 cells. Comparing to the control cells, compound 19a induced an increase in expression of cleaved caspase-3 and caspase-9 by 2.44- and 2.69-fold, respectively. Finally, the binding modes of the target derivatives were investigated through docking studies against the proposed molecular target (VEGFR-2, PDB ID: 2OH4).


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinoxalinas/farmacologia , Triazóis/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA