Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562877

RESUMO

HIV-1 integration into the human genome is dependent on 3'-processing of the reverse transcribed viral DNA. Recently, we reported that the cellular Three Prime Repair Exonuclease 1 (TREX1) enhances HIV-1 integration by degrading the unprocessed viral DNA, while the integration-competent 3'-processed DNA remained resistant. Here, we describe the mechanism by which the 3'-processed HIV-1 DNA resists TREX1-mediated degradation. Our kinetic studies revealed that the rate of cleavage (kcat) of the 3'-processed DNA was significantly lower than the unprocessed HIV-1 DNA by TREX1. The efficiency of degradation (kcat/KM) of the 3'-processed DNA was also significantly lower than the unprocessed DNA. Furthermore, the binding affinity (Kd) of TREX1 was markedly lower to the 3'-processed DNA compared to the unprocessed DNA. Molecular docking and dynamics studies revealed distinct conformational binding modes of TREX1 with the 3'-processed and unprocessed HIV-1 DNA. Particularly, the unprocessed DNA was favorably positioned in the active site with polar interactions with the catalytic residues of TREX1. Additionally, a stable complex was formed between TREX1 and the unprocessed DNA compared the 3'-processed DNA. These results pinpoint the biochemical mechanism by which TREX1 preferentially degrades the integration-incompetent HIV-1 DNA and reveal the unique structural and conformational properties of the integration-competent 3'-processed HIV-1 DNA.

2.
mBio ; 15(1): e0021222, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38085100

RESUMO

IMPORTANCE: HIV-1 capsid protein (CA)-independently or by recruiting host factors-mediates several key steps of virus replication in the cytoplasm and nucleus of the target cell. Research in the recent years have established that CA is multifunctional and genetically fragile of all the HIV-1 proteins. Accordingly, CA has emerged as a validated and high priority therapeutic target, and the first CA-targeting antiviral drug was recently approved for treating multi-drug resistant HIV-1 infection. However, development of next generation CA inhibitors depends on a better understanding of CA's known roles, as well as probing of CA's novel roles, in HIV-1 replication. In this timely review, we present an updated overview of the current state of our understanding of CA's multifunctional role in HIV-1 replication-with a special emphasis on CA's newfound post-nuclear roles, highlight the pressing knowledge gaps, and discuss directions for future research.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , HIV-1/genética , HIV-1/metabolismo , Soropositividade para HIV/metabolismo , Replicação Viral/genética , Integração Viral
3.
J Biol Chem ; 300(2): 105605, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159857

RESUMO

Prolidase (PEPD) is the only hydrolase that cleaves the dipeptides containing C-terminal proline or hydroxyproline-the rate-limiting step in collagen biosynthesis. However, the molecular regulation of prolidase expression remains largely unknown. In this study, we have identified overlapping binding sites for the transcription factors Krüppel-like factor 6 (KLF6) and Specificity protein 1 (Sp1) in the PEPD promoter and demonstrate that KLF6/Sp1 transcriptionally regulate prolidase expression. By cloning the PEPD promoter into a luciferase reporter and through site-directed deletion, we pinpointed the minimal sequences required for KLF6 and Sp1-mediated PEPD promoter-driven transcription. Interestingly, Sp1 inhibition abrogated KLF6-mediated PEPD promoter activity, suggesting that Sp1 is required for the basal expression of prolidase. We further studied the regulation of PEPD by KLF6 and Sp1 during transforming growth factor ß1 (TGF-ß1) signaling, since both KLF6 and Sp1 are key players in TGF-ß1 mediated collagen biosynthesis. Mouse and human fibroblasts exposed to TGF-ß1 resulted in the induction of PEPD transcription and prolidase expression. Inhibition of TGF-ß1 signaling abrogated PEPD promoter-driven transcriptional activity of KLF6 and Sp1. Knock-down of KLF6 as well as Sp1 inhibition also reduced prolidase expression. Chromatin immunoprecipitation assay supported direct binding of KLF6 and Sp1 to the PEPD promoter and this binding was enriched by TGF-ß1 treatment. Finally, immunofluorescence studies showed that KLF6 co-operates with Sp1 in the nucleus to activate prolidase expression and enhance collagen biosynthesis. Collectively, our results identify functional elements of the PEPD promoter for KLF6 and Sp1-mediated transcriptional activation and describe the molecular mechanism of prolidase expression.


Assuntos
Dipeptidases , Fator 6 Semelhante a Kruppel , Transdução de Sinais , Fator de Transcrição Sp1 , Animais , Humanos , Camundongos , Colágeno/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
4.
J Virol ; 97(11): e0073223, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37843371

RESUMO

The HIV-1 genome encodes a small number of proteins with structural, enzymatic, regulatory, and accessory functions. These viral proteins interact with a number of host factors to promote the early and late stages of HIV-1 infection. During the early stages of infection, interactions between the viral proteins and host factors enable HIV-1 to enter the target cell, traverse the cytosol, dock at the nuclear pore, gain access to the nucleus, and integrate into the host genome. Similarly, the viral proteins recruit another set of host factors during the late stages of infection to orchestrate HIV-1 transcription, translation, assembly, and release of progeny virions. Among the host factors implicated in HIV-1 infection, Cyclophilin A (CypA) was identified as the first host factor to be packaged within HIV-1 particles. It is now well established that CypA promotes HIV-1 infection by directly binding to the viral capsid. Mechanistic models to pinpoint CypA's role have spanned from an effect in the producer cell to the early steps of infection in the target cell. In this review, we will describe our understanding of the role(s) of CypA in HIV-1 infection, highlight the current knowledge gaps, and discuss the potential role of this host factor in the post-nuclear entry steps of HIV-1 infection.


Assuntos
Ciclofilina A , Infecções por HIV , HIV-1 , Humanos , Proteínas do Capsídeo/genética , Núcleo Celular/metabolismo , Ciclofilina A/genética , Ciclofilina A/metabolismo , Infecções por HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Proteínas Virais/metabolismo , Interações Hospedeiro-Patógeno
5.
J Acquir Immune Defic Syndr ; 94(2S): S5-S12, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707842

RESUMO

BACKGROUND: There is an urgent need to increase diversity among scientific investigators in the HIV research field to be more reflective of communities highly affected by the HIV epidemic. Thus, it is critical to promote the inclusion and advancement of early-stage scholars from racial and ethnic groups underrepresented in HIV science and medicine. METHODS: To widen the HIV research career pathway for early-stage scholars from underrepresented minority groups, the National Institutes of Health supported the development of the Centers for AIDS Research (CFAR) Diversity, Equity, and Inclusion Pathway Initiative (CDEIPI). This program was created through partnerships between CFARs and Historically Black Colleges and Universities and other Minority Serving Institutions throughout the United States. RESULTS: Seventeen CFARs and more than 20 Historically Black Colleges and Universities and Minority Serving Institutions have participated in this initiative to date. Programs were designed for the high school (8), undergraduate (13), post baccalaureate (2), graduate (12), and postdoctoral (4) levels. Various pedagogical approaches were used including didactic seminar series, intensive multiday workshops, summer residential programs, and mentored research internship opportunities. During the first 18 months of the initiative, 257 student scholars participated in CDEIPI programs including 150 high school, 73 undergraduate, 3 post baccalaureate, 27 graduate, and 4 postdoctoral students. CONCLUSION: Numerous student scholars from a wide range of educational levels, geographic backgrounds, and racial and ethnic minority groups have engaged in CDEIPI programs. Timely and comprehensive program evaluation data will be critical to support a long-term commitment to this unique training initiative.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Estados Unidos , Humanos , Etnicidade , Diversidade, Equidade, Inclusão , Grupos Minoritários
6.
J Acquir Immune Defic Syndr ; 94(2S): S42-S46, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707847

RESUMO

BACKGROUND: The Southern region of the United States has the highest HIV incidence, and new infections disproportionately affect Black Americans. The Tennessee Center for AIDS Research (CFAR) Diversity, Equity, and Inclusion Pathway Initiative (CDEIPI) program supports the training of individuals from groups underrepresented in medicine and science in multiple areas of research to increase the pool of HIV-focused investigators at early educational and career stages. SETTING: The Tennessee CFAR is a partnership between Vanderbilt University Medical Center, Meharry Medical College (one of the oldest historically Black medical colleges), Tennessee Department of Health, and Nashville Community AIDS Resources, Education and Services (a sophisticated community service organization, which emphasizes research training responsive to regional and national priorities). METHODS: The Tennessee CFAR CDEIPI program leverages existing Vanderbilt University Medical Center and Meharry Medical College structured biomedical training programs for high school and undergraduate students to provide an intensive, mentored, HIV research experience augmented by CFAR resources situating this training within the broader history, scientific breadth, and societal and political aspects of the HIV epidemic. RESULTS: The first year of the Tennessee CFAR CDEIPI program trained 3 high school and 3 undergraduate students from underrepresented in medicine and science backgrounds in basic, clinical/translational, and community-focused research projects with a diverse group of 9 mentors. All students completed the program, and evaluations yielded positive feedback regarding mentoring quality and effectiveness, and continued interest in HIV-related research. CONCLUSIONS: The Tennessee CFAR CDEIPI program will continue to build upon experience from the first year to further contribute to national efforts to increase diversity in HIV-related research.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Humanos , Tennessee/epidemiologia , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Instituições Acadêmicas , Estudantes
7.
J Virol ; 96(18): e0101122, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36094316

RESUMO

HIV-1 DNA is preferentially integrated into chromosomal hot spots by the preintegration complex (PIC). To understand the mechanism, we measured the DNA integration activity of PICs-extracted from infected cells-and intasomes, biochemically assembled PIC substructures using a number of relevant target substrates. We observed that PIC-mediated integration into human chromatin is preferred compared to genomic DNA. Surprisingly, nucleosomes lacking histone modifications were not preferred integration compared to the analogous naked DNA. Nucleosomes containing the trimethylated histone 3 lysine 36 (H3K36me3), an epigenetic mark linked to active transcription, significantly stimulated integration, but the levels remained lower than the naked DNA. Notably, H3K36me3-modified nucleosomes with linker DNA optimally supported integration mediated by the PIC but not by the intasome. Interestingly, optimal intasome-mediated integration required the cellular cofactor LEDGF. Unexpectedly, LEDGF minimally affected PIC-mediated integration into naked DNA but blocked integration into nucleosomes. The block for the PIC-mediated integration was significantly relieved by H3K36me3 modification. Mapping the integration sites in the preferred substrates revealed that specific features of the nucleosome-bound DNA are preferred for integration, whereas integration into naked DNA was random. Finally, biochemical and genetic studies demonstrate that DNA condensation by the H1 protein dramatically reduces integration, providing further evidence that features inherent to the open chromatin are preferred for HIV-1 integration. Collectively, these results identify the optimal target substrate for HIV-1 integration, report a mechanistic link between H3K36me3 and integration preference, and importantly, reveal distinct mechanisms utilized by the PIC for integration compared to the intasomes. IMPORTANCE HIV-1 infection is dependent on integration of the viral DNA into the host chromosomes. The preintegration complex (PIC) containing the viral DNA, the virally encoded integrase (IN) enzyme, and other viral/host factors carries out HIV-1 integration. HIV-1 integration is not dependent on the target DNA sequence, and yet the viral DNA is selectively inserted into specific "hot spots" of human chromosomes. A growing body of literature indicates that structural features of the human chromatin are important for integration targeting. However, the mechanisms that guide the PIC and enable insertion of the PIC-associated viral DNA into specific hot spots of the human chromosomes are not fully understood. In this study, we describe a biochemical mechanism for the preference of the HIV-1 DNA integration into open chromatin. Furthermore, our study defines a direct role for the histone epigenetic mark H3K36me3 in HIV-1 integration preference and identify an optimal substrate for HIV-1 PIC-mediated viral DNA integration.


Assuntos
Cromossomos Humanos , HIV-1 , Código das Histonas , Histonas , Nucleossomos , Integração Viral , Cromatina/metabolismo , Cromossomos Humanos/virologia , DNA Viral/genética , DNA Viral/metabolismo , Infecções por HIV/virologia , Integrase de HIV/genética , Integrase de HIV/metabolismo , HIV-1/genética , Histonas/química , Histonas/metabolismo , Humanos , Lisina/genética , Metilação , Nucleossomos/genética , Nucleossomos/metabolismo , Nucleossomos/virologia , Integração Viral/genética
8.
PNAS Nexus ; 1(2): pgac064, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35719891

RESUMO

HIV-1 replication is durably controlled without antiretroviral therapy (ART) in certain infected individuals called elite controllers (ECs). These individuals express specific human leukocyte antigens (HLA) that tag HIV-infected cells for elimination by presenting viral epitopes to CD8+ cytotoxic T-lymphocytes (CTL). In HIV-infected individuals expressing HLA-B27, CTLs primarily target the viral capsid protein (CA)-derived KK10 epitope. While selection of CA mutation R264K helps HIV-1 escape this potent CTL response, the accompanying fitness cost severely diminishes virus infectivity. Interestingly, selection of a compensatory CA mutation S173A restores HIV-1 replication. However, the molecular mechanism(s) underlying HIV-1 escape from this ART-free virus control by CTLs is not fully understood. Here, we report that the R264K mutation-associated infectivity defect arises primarily from impaired HIV-1 DNA integration, which is restored by the S173A mutation. Unexpectedly, the integration defect of the R264K variant was also restored upon depletion of the host cyclophilin A. These findings reveal a nuclear crosstalk between CA and HIV-1 integration as well as identify a previously unknown role of cyclophilin A in viral DNA integration. Finally, our study identifies a novel immune escape mechanism of an HIV-1 variant escaping a CA-directed CTL response.

9.
Cell Mol Life Sci ; 79(1): 5, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936021

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are regulators of cell-cell interactions and mediators of horizontal transfer of bioactive molecules between cells. EV-mediated cell-cell interactions play roles in physiological and pathophysiological processes, which maybe modulated by exposure to pathogens and cocaine use. However, the effect of pathogens and cocaine use on EV composition and function are not fully understood. RESULTS: Here, we used systems biology and multi-omics analysis to show that HIV infection (HIV +) and cocaine (COC) use (COC +) promote the release of semen-derived EVs (SEV) with dysregulated extracellular proteome (exProtein), miRNAome (exmiR), and exmiR networks. Integrating SEV proteome and miRNAome revealed a significant decrease in the enrichment of disease-associated, brain-enriched, and HIV-associated miR-128-3p (miR-128) in HIV + COC + SEV with a concomitant increase in miR-128 targets-PEAK1 and RND3/RhoE. Using two-dimensional-substrate single cell haptotaxis, we observed that in the presence of HIV + COC + SEV, contact guidance provided by the extracellular matrix (ECM, collagen type 1) network facilitated far-ranging haptotactic cues that guided monocytes over longer distances. Functionalizing SEV with a miR-128 mimic revealed that the strategic changes in monocyte haptotaxis are in large part the result of SEV-associated miR-128. CONCLUSIONS: We propose that compositionally and functionally distinct HIV + COC + and HIV-COC- SEVs and their exmiR networks may provide cells relevant but divergent haptotactic guidance in the absence of chemotactic cues, under both physiological and pathophysiological conditions.


Assuntos
Quimiotaxia , Cocaína/farmacologia , Vesículas Extracelulares/metabolismo , Infecções por HIV/genética , MicroRNAs/metabolismo , Monócitos/metabolismo , Proteoma/metabolismo , Sêmen/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Comorbidade , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , Adulto Jovem
10.
Noncoding RNA ; 7(4)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34698261

RESUMO

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 (2019-nCoV) has devastated global healthcare and economies. Despite the stabilization of infectivity rates in some developed nations, several countries are still under the grip of the pathogenic viral mutants that are causing a significant increase in infections and hospitalization. Given this urgency, targeting of key host factors regulating SARS-CoV-2 life cycle is postulated as a novel strategy to counter the virus and its associated pathological outcomes. In this regard, Poly (ADP)-ribose polymerase-1 (PARP-1) is being increasingly recognized as a possible target. PARP-1 is well studied in human diseases such as cancer, central nervous system (CNS) disorders and pathology of RNA viruses. Emerging evidence indicates that regulation of PARP-1 by non-coding RNAs such as microRNAs is integral to cell survival, redox balance, DNA damage response, energy homeostasis, and several other cellular processes. In this short perspective, we summarize the recent findings on the microRNA/PARP-1 axis and its therapeutic potential for COVID-19 pathologies.

11.
Front Mol Biosci ; 8: 723003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532344

RESUMO

Prolidase (peptidase D), encoded by the PEPD gene, is a ubiquitously expressed cytosolic metalloproteinase, the only enzyme capable of cleaving imidodipeptides containing C-terminal proline or hydroxyproline. Prolidase catalyzes the rate-limiting step during collagen recycling and is essential in protein metabolism, collagen turnover, and matrix remodeling. Prolidase, therefore plays a crucial role in several physiological processes such as wound healing, inflammation, angiogenesis, cell proliferation, and carcinogenesis. Accordingly, mutations leading to loss of prolidase catalytic activity result in prolidase deficiency a rare autosomal recessive metabolic disorder characterized by defective wound healing. In addition, alterations in prolidase enzyme activity have been documented in numerous pathological conditions, making prolidase a useful biochemical marker to measure disease severity. Furthermore, recent studies underscore the importance of a non-enzymatic role of prolidase in cell regulation and infectious disease. This review aims to provide comprehensive information on prolidase, from its discovery to its role in health and disease, while addressing the current knowledge gaps.

12.
Amino Acids ; 53(12): 1903-1915, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34417893

RESUMO

Cocaine is a commonly abused drug worldwide. Acute as well as repeated exposure to cocaine activates persistent cellular and molecular changes in the brain reward regions. The effects of cocaine are predominantly mediated via alterations in neuronal gene expression by chromatin remodeling. Poly(ADP-ribose) polymerase-1 (PARP-1) catalyzed PARylation of chromatin has been reported as an important regulator of cocaine-mediated gene expression. PARP-1 dependent ADP-ribosylation is an energy-dependent process. In this study, we investigated the cellular energy response to cocaine-induced upregulation of PARP-1 expression. Exposure of differentiated SH-SY5Y cells to varying concentrations of cocaine resulted in the induction of PARP-1 dependent PARylation of p53 tumor suppressor. Further analysis revealed that PARylation of p53 by cocaine treatment resulted in nuclear accumulation of p53. However, induction and nuclear accumulation of p53 did not correlate with neuronal apoptosis/cell death upon cocaine exposure. Interestingly, cocaine-induced p53 PARylation resulted in the induction of proline oxidase (POX)-a p53 responsive gene involved in cellular metabolism. Given that cocaine-induced p53 PARylation is an energy-dependent process, we observed that cocaine-induced PARP-1/p53/POX axes alters cellular energy metabolism. Accordingly, using pharmacological and genetic studies of PARP-1, p53, and POX, we demonstrated the contribution of POX in maintaining cellular energy during neuronal function. Collectively, these studies highlight activation of a novel metabolic pathway in response to cocaine treatment.


Assuntos
Trifosfato de Adenosina/metabolismo , Cocaína/efeitos adversos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Prolina/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo
13.
J Virol ; 95(17): e0055521, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34105995

RESUMO

Three prime repair exonuclease 1 (TREX1) is the most abundant 3'→5' exonuclease in mammalian cells. It has been suggested that TREX1 degrades HIV-1 DNA to enable the virus to evade the innate immune system. However, the exact role of TREX1 during early steps of HIV-1 infection is not clearly understood. In this study, we report that HIV-1 infection is associated with upregulation, perinuclear accumulation, and nuclear localization of TREX1. However, TREX1 overexpression did not affect reverse transcription or nuclear entry of the virus. Surprisingly, HIV-1 DNA integration was increased in TREX1-overexpressing cells, suggesting a role of the exonuclease in the post-nuclear entry step of infection. Accordingly, preintegration complexes (PICs) extracted from TREX1-overexpressing cells retained higher levels of DNA integration activity. TREX1 depletion resulted in reduced levels of proviral integration, and PICs formed in TREX1-depleted cells retained lower DNA integration activity. Addition of purified TREX1 to PICs also enhanced DNA integration activity, suggesting that TREX1 promotes HIV-1 integration by stimulating PIC activity. To understand the mechanism, we measured TREX1 exonuclease activity on substrates containing viral DNA ends. These studies revealed that TREX1 preferentially degrades the unprocessed viral DNA, but the integration-competent 3'-processed viral DNA remains resistant to degradation. Finally, we observed that TREX1 addition stimulates the activity of HIV-1 intasomes assembled with the unprocessed viral DNA but not that of intasomes containing the 3'-processed viral DNA. These biochemical analyses provide a mechanism by which TREX1 directly promotes HIV-1 integration. Collectively, our study demonstrates that HIV-1 infection upregulates TREX1 to facilitate viral DNA integration. IMPORTANCE Productive HIV-1 infection is dependent on a number of cellular factors. Therefore, a clear understanding of how the virus exploits the cellular machinery will identify new targets for inhibiting HIV-1 infection. The three prime repair exonuclease 1 (TREX1) is the most active cellular exonuclease in mammalian cells. It has been reported that TREX1 prevents accumulation of HIV-1 DNA and enables the virus to evade the host innate immune response. Here, we show that HIV-1 infection results in the upregulation, perinuclear accumulation, and nuclear localization of TREX1. We also provide evidence that TREX1 promotes HIV-1 integration by preferentially degrading viral DNAs that are incompatible with chromosomal insertion. These observations identify a novel role of TREX1 in a post-nuclear entry step of HIV-1 infection.


Assuntos
DNA Viral/metabolismo , Exodesoxirribonucleases/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Imunidade Inata/imunologia , Fosfoproteínas/metabolismo , Integração Viral , Replicação Viral , Núcleo Celular , DNA Viral/genética , Exodesoxirribonucleases/genética , Células HEK293 , Infecções por HIV/genética , Células HeLa , Humanos , Fosfoproteínas/genética
14.
Front Microbiol ; 12: 645713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177827

RESUMO

In the 21st century, we have witnessed three coronavirus outbreaks: SARS in 2003, MERS in 2012, and the ongoing pandemic coronavirus disease 2019 (COVID-19). The search for efficient vaccines and development and repurposing of therapeutic drugs are the major approaches in the COVID-19 pandemic research area. There are concerns about the evolution of mutant strains (e.g., VUI - 202012/01, a mutant coronavirus in the United Kingdom), which can potentially reduce the impact of the current vaccine and therapeutic drug development trials. One promising approach to counter the mutant strains is the "development of effective broad-spectrum antiviral drugs" against coronaviruses. This study scientifically investigates potent food bioactive broad-spectrum antiviral compounds by targeting main protease (Mpro) and papain-like protease (PLpro) proteases of coronaviruses (CoVs) using in silico and in vitro approaches. The results reveal that phycocyanobilin (PCB) shows potential inhibitor activity against both proteases. PCB had the best binding affinity to Mpro and PLpro with IC50 values of 71 and 62 µm, respectively. Also, in silico studies with Mpro and PLpro enzymes of other human and animal CoVs indicate broad-spectrum inhibitor activity of the PCB. As with PCB, other phycobilins, such as phycourobilin (PUB), phycoerythrobilin (PEB), and phycoviolobilin (PVB) show similar binding affinity to SARS-CoV-2 Mpro and PLpro.

15.
Front Immunol ; 12: 607044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717088

RESUMO

Suppressive mechanisms operating within T cells are linked to immune dysfunction in the tumor microenvironment. We have previously reported using adoptive T cell immunotherapy models that tumor-bearing mice treated with a regimen of proteasome inhibitor, bortezomib - a dipeptidyl boronate, show increased antitumor lymphocyte effector function and survival. Here, we identify a mechanism for the improved antitumor CD8+ T cell function following bortezomib treatment. Intravenous administration of bortezomib at a low dose (1 mg/kg body weight) in wild-type or tumor-bearing mice altered the expression of a number of miRNAs in CD8+ T cells. Specifically, the effect of bortezomib was prominent on miR-155 - a key cellular miRNA involved in T cell function. Importantly, bortezomib-induced upregulation of miR-155 was associated with the downregulation of its targets, the suppressor of cytokine signaling 1 (SOCS1) and inositol polyphosphate-5-phosphatase (SHIP1). Genetic and biochemical analysis confirmed a functional link between miR-155 and these targets. Moreover, activated CD8+ T cells treated with bortezomib exhibited a significant reduction in programmed cell death-1 (PD-1) expressing SHIP1+ phenotype. These data underscore a mechanism of action by which bortezomib induces miR-155-dependent downregulation of SOCS1 and SHIP1 negative regulatory proteins, leading to a suppressed PD-1-mediated T cell exhaustion. Collectively, data provide novel molecular insights into bortezomib-mediated lymphocyte-stimulatory effects that could overcome immunosuppressive actions of tumor on antitumor T cell functions. The findings support the approach that bortezomib combined with other immunotherapies would lead to improved therapeutic outcomes by overcoming T cell exhaustion in the tumor microenvironment.


Assuntos
Antineoplásicos/farmacologia , Bortezomib/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Inibidores de Proteassoma/farmacologia , Proteína 1 Supressora da Sinalização de Citocina/genética , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Contagem de Linfócitos , Camundongos , MicroRNAs/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Dobramento de RNA , Interferência de RNA , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/química
16.
Sci Rep ; 11(1): 1422, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446840

RESUMO

Methamphetamine (METH) is a highly addictive psychostimulant that causes long-lasting effects in the brain and increases the risk of developing neurodegenerative diseases. The cellular and molecular effects of METH in the brain are functionally linked to alterations in glutamate levels. Despite the well-documented effects of METH on glutamate neurotransmission, the underlying mechanism by which METH alters glutamate levels is not clearly understood. In this study, we report an essential role of proline biosynthesis in maintaining METH-induced glutamate homeostasis. We observed that acute METH exposure resulted in the induction of proline biosynthetic enzymes in both undifferentiated and differentiated neuronal cells. Proline level was also increased in these cells after METH exposure. Surprisingly, METH treatment did not increase glutamate levels nor caused neuronal excitotoxicity. However, METH exposure resulted in a significant upregulation of pyrroline-5-carboxylate synthase (P5CS), the key enzyme that catalyzes synthesis of proline from glutamate. Interestingly, depletion of P5CS by CRISPR/Cas9 resulted in a significant increase in glutamate levels upon METH exposure. METH exposure also increased glutamate levels in P5CS-deficient proline-auxotropic cells. Conversely, restoration of P5CS expression in P5CS-deficient cells abrogated the effect of METH on glutamate levels. Consistent with these findings, P5CS expression was significantly enhanced in the cortical brain region of mice administered with METH and in the slices of cortical brain tissues treated with METH. Collectively, these results uncover a key role of P5CS for the molecular effects of METH and highlight that excess glutamate can be sequestered for proline biosynthesis as a protective mechanism to maintain glutamate homeostasis during drug exposure.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Homeostase/efeitos dos fármacos , Metanfetamina/toxicidade , Prolina/biossíntese , Doença Aguda , Aldeído Desidrogenase/metabolismo , Animais , Células CHO , Cricetulus , Humanos , Masculino , Camundongos , Neurônios/metabolismo
17.
Sci Rep ; 10(1): 11197, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641757

RESUMO

MiR-124 is a highly expressed miRNA in the brain and regulates genes involved in neuronal function. We report that miR-124 post-transcriptionally regulates PARP-1. We have identified a highly conserved binding site of miR-124 in the 3'-untranslated region (3'UTR) of Parp-1 mRNA. We demonstrate that miR-124 directly binds to the Parp-1 3'UTR and mutations in the seed sequences abrogate binding between the two RNA molecules. Luciferase reporter assay revealed that miR-124 post-transcriptionally regulates Parp-1 3'UTR activity in a dopaminergic neuronal cell model. Interestingly, the binding region of miR-124 in Parp-1 3'UTR overlapped with the target sequence of miR-125b, another post-transcriptional regulator of Parp-1. Our results from titration and pull-down studies revealed that miR-124 binds to Parp-1 3'UTR with greater affinity and confers a dominant post-transcriptional inhibition compared to miR-125b. Interestingly, acute or chronic cocaine exposure downregulated miR-124 levels concomitant with upregulation of PARP-1 protein in dopaminergic-like neuronal cells in culture. Levels of miR-124 were also downregulated upon acute or chronic cocaine exposure in the mouse nucleus accumbens (NAc)-a key reward region of brain. Time-course studies revealed that cocaine treatment persistently downregulated miR-124 in NAc. Consistent with this finding, miR-124 expression was also significantly reduced in the NAc of animals conditioned for cocaine place preference. Collectively, these studies identify Parp-1 as a direct target of miR-124 in neuronal cells, establish miR-124 as a cocaine-regulated miRNA in the mouse NAc, and highlight a novel pathway underlying the molecular effects of cocaine.


Assuntos
Cocaína/farmacologia , MicroRNAs/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/genética , Regiões 3' não Traduzidas/genética , Animais , Sítios de Ligação/genética , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Injeções Intraperitoneais , Masculino , Camundongos , MicroRNAs/genética , Modelos Animais , Mutação , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo
18.
J Biol Chem ; 295(15): 5081-5094, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32152226

RESUMO

Cleavage and polyadenylation specificity factor 6 (CPSF6) is a cellular protein involved in mRNA processing. Emerging evidence suggests that CPSF6 also plays key roles in HIV-1 infection, specifically during nuclear import and integration targeting. However, the cellular and molecular mechanisms that regulate CPSF6 expression are largely unknown. In this study, we report a post-transcriptional mechanism that regulates CPSF6 via the cellular microRNA miR-125b. An in silico analysis revealed that the 3'UTR of CPSF6 contains a miR-125b-binding site that is conserved across several mammalian species. Because miRNAs repress protein expression, we tested the effects of miR-125b expression on CPSF6 levels in miR-125b knockdown and over-expression experiments, revealing that miR-125b and CPSF6 levels are inversely correlated. To determine whether miR-125b post-transcriptionally regulates CPSF6, we introduced the 3'UTR of CPSF6 mRNA into a luciferase reporter and found that miR-125b negatively regulates CPSF6 3'UTR-driven luciferase activity. Accordingly, mutations in the miR-125b seed sequence abrogated the regulatory effect of the miRNA on the CPSF6 3'UTR. Finally, pulldown experiments demonstrated that miR-125b physically interacts with CPSF6 3'UTR. Interestingly, HIV-1 infection down-regulated miR-125b expression concurrent with up-regulation of CPSF6. Notably, miR-125b down-regulation in infected cells was not due to reduced pri-miRNA or pre-miRNA levels. However, miR-125b down-regulation depended on HIV-1 reverse transcription but not viral DNA integration. These findings establish a post-transcriptional mechanism that controls CPSF6 expression and highlight a novel function of miR-125b during HIV-host interaction.


Assuntos
Regiões 3' não Traduzidas/genética , Capsídeo/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , MicroRNAs/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Sítios de Ligação , Infecções por HIV/genética , Infecções por HIV/metabolismo , Humanos , MicroRNAs/metabolismo , Mutação , Integração Viral , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/genética
19.
Mol Cell Proteomics ; 19(1): 78-100, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676584

RESUMO

Blood and semen are important body-fluids that carry exosomes for bioinformation transmission. Therefore, characterization of their proteomes is necessary for understanding body-fluid-specific physiologic and pathophysiologic functions. Using systematic multifactorial proteomic profiling, we characterized the proteomes of exosomes and exosome-free fractions from autologous blood and semen from three HIV-uninfected and three HIV-infected participants (total of 24 samples). We identified exosome-based protein signatures specific to blood and semen along with HIV-induced tissue-dependent proteomic perturbations. We validated our findings with samples from 16 additional donors and showed that unlike blood exosomes (BE), semen exosomes (SE) are enriched in clusterin. SE but not BE promote Protein·Nucleic acid binding and increase cell adhesion irrespective of HIV infection. This is the first comparative study of the proteome of autologous BE and SE. The proteins identified may be developed as biomarkers applicable to different fields of medicine, including reproduction and infectious diseases.


Assuntos
Sangue/metabolismo , Exossomos/metabolismo , Infecções por HIV/metabolismo , HIV-1/genética , Proteoma , Proteômica/métodos , Sêmen/metabolismo , Adulto , Biomarcadores/metabolismo , Infecções por HIV/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Mapas de Interação de Proteínas , RNA Viral/genética , Adulto Jovem
20.
J Life Sci (Westlake Village) ; 1(1): 4-37, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31468033

RESUMO

The human immunodeficiency virus (HIV) infection of the immune cells expressing the cluster of differentiation 4 cell surface glycoprotein (CD4+ cells) causes progressive decline of the immune system and leads to the acquired immunodeficiency syndrome (AIDS). The ongoing global HIV/AIDS pandemic has already claimed over 35 million lives. Even after 37 years into the epidemic, neither a cure is available for the 37 million people living with HIV (PLHIV) nor is a vaccine discovered to avert the millions of new HIV infections that continue to occur each year. If left untreated, HIV infection typically progresses to AIDS and, ultimately, causes death in a majority of PLHIV. The recommended combination antiretroviral therapy (cART) suppresses virus replication and viremia, prevents or delays progression to AIDS, reduces transmission rates, and lowers HIV-associated mortality and morbidity. However, because cART does not eliminate HIV, and an enduring pool of infected resting memory CD4+ T cells (latent HIV reservoir) is established early on, any interruption to cART leads to a relapse of viremia and disease progression. Hence, strict adherence to a life-long cART regimen is mandatory for managing HIV infection in PLHIV. The HIV-1-specific cytotoxic T cells expressing the CD8 glycoprotein (CD8+ CTL) limit the virus replication in vivo by recognizing the viral antigens presented by human leukocyte antigen (HLA) class I molecules on the infected cell surface and killing those cells. Nevertheless, CTLs fail to durably control HIV-1 replication and disease progression in the absence of cART. Intriguingly, <1% of cART-naive HIV-infected individuals called elite controllers/HIV controllers (HCs) exhibit the core features that define a HIV-1 "functional cure" outcome in the absence of cART: durable viral suppression to below the limit of detection, long-term non-progression to AIDS, and absence of viral transmission. Robust HIV-1-specific CTL responses and prevalence of protective HLA alleles associated with enduring HIV-1 control have been linked to the HC phenotype. An understanding of the molecular mechanisms underlying the CTL-mediated suppression of HIV-1 replication and disease progression in HCs carrying specific protective HLA alleles may yield promising insights towards advancing the research on HIV cure and prophylactic HIV vaccine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...