Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1267826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965048

RESUMO

Microalgae, as photosynthetic organisms, have the potential to produce biomolecules for use in food, feed, cosmetics, nutraceuticals, fuel, and other applications. Faster growth rates and higher protein and lipid content make microalgae a popular chassis for many industrial applications. However, challenges such as low productivity and high production costs have limited their commercialization. To overcome these challenges, bioengineering approaches such as genetic engineering, metabolic engineering, and synthetic biology have been employed to improve the productivity and quality of microalgae-based products. Genetic engineering employing genome editing tools like CRISPR/Cas allows precise and targeted genetic modifications. CRISPR/Cas systems are presently used to modify the genetic makeup of microalgae for enhanced production of specific biomolecules. However, these tools are yet to be explored explicitly in microalgae owing to some limitations. Despite the progress made in CRISPR-based bioengineering approaches, there is still a need for further research to optimize the production of microalgae-based products. This includes improving the efficiency of genome editing tools, understanding the regulatory mechanisms of microalgal metabolism, and optimizing growth conditions and cultivation strategies. Additionally, addressing the ethical, social, and environmental concerns associated with genetic modification of microalgae is crucial for the responsible development and commercialization of microalgae-based products. This review summarizes the advancements of CRISPR-based bioengineering for production of industrially important biomolecules and provides key considerations to use CRISPR/Cas systems in microalgae. The review will help researchers to understand the progress and to initiate genome editing experiments in microalgae.

2.
Methods Mol Biol ; 2653: 207-217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995629

RESUMO

Genome editing technologies have provided opportunities to manipulate literally any genomic location, opening new avenues for reverse genetics-based improvements. Among them, CRISPR/Cas9 is the most versatile tool for genome editing applications in prokaryotes and eukaryotes. Here, we provide a guide to successfully carry out high-efficiency genome editing in Chlamydomonas reinhardtii using preassembled CRISPR/Cas9-gRNA ribonucleoprotein (RNP) complexes.


Assuntos
Chlamydomonas reinhardtii , Edição de Genes , Sistemas CRISPR-Cas/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , RNA Guia de Sistemas CRISPR-Cas
3.
Mol Biol Rep ; 47(11): 8747-8755, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33074412

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR) - Cas associated protein 9 (Cas9) system is very precise, efficient and relatively simple in creating genetic modifications at a predetermined locus in the genome. Genome editing with Cas9 ribonucleoproteins (RNPs) has reduced cytotoxic effects, off-target cleavage and increased on-target activity and the editing efficiencies. The unicellular alga Chlamydomonas reinhardtii is an emerging model for studying the production of high-value products for industrial applications. Development of C. reinhardtii as an industrial biotechnology host can be achieved more efficiently through genetic modifications using genome editing tools. We made an attempt to target MAA7 gene that encodes the tryptophan synthase ß-Subunit using CRISPR-Cas9 RNPs to demonstrate knock-out and knock-in through homology-dependent repair template at the target site. In this study, we have demonstrated targeted gene knock-out in C. reinhardtii using programmed RNPs. Targeted editing of MAA7 gene was confirmed by sequencing the clones that were resistant to 5-Fluoroindole (5-FI). Non-homologous end joining (NHEJ) repair mechanism led to insertion, deletion, and/or base substitution in the Cas9 cleavage vicinity, encoding non-functional MAA7 protein product (knock-out), conferring resistance to 5-FI. Here, we report an efficient protocol for developing knock-out mutants in Chlamydomonas using CRISPR-Cas9 RNPs. The high potential efficiency of editing may also eliminate the need to select mutants by phenotype. These research findings would be more likely applied to other green algae for developing green cell factories to produce high-value molecules.


Assuntos
Sistemas CRISPR-Cas , Chlamydomonas reinhardtii/genética , Edição de Genes/métodos , Triptofano Sintase/genética , Biotecnologia , Técnicas de Inativação de Genes
4.
Crit Rev Food Sci Nutr ; 58(11): 1791-1807, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28272908

RESUMO

Today, the dramatic changes in types of food consumed have led to an increased burden of chronic diseases. Therefore, the emphasis of food research is not only to ensure quality food that can supply adequate nutrients to prevent nutrition related diseases, but also to ensure overall physical and mental-health. This has led to the concept of functional foods and nutraceuticals (FFNs), which can be ideally produced and delivered through plants. Metabolomics can help in getting the most relevant functional information, and thus has been considered the greatest -OMICS technology to date. However, metabolomics has not been exploited to the best potential in plant sciences. The technology can be leveraged to identify the health promoting compounds and metabolites that can be used for the development of FFNs. This article reviews (i) plant-based FFNs-related metabolites and their health benefits; (ii) use of different analytic platforms for targeted and non-targeted metabolite profiling along with experimental considerations; (iii) exploitation of metabolomics to develop FFNs in plants using various biotechnological tools; and (iv) potential use of metabolomics in plant breeding. We have also provided some insights into integration of metabolomics with latest genome editing tools for metabolic pathway regulation in plants.


Assuntos
Biotecnologia , Suplementos Nutricionais/análise , Alimento Funcional/análise , Genoma de Planta , Metabolômica , Alcaloides/análise , Bases de Dados Factuais , Ácidos Graxos/análise , Humanos , Compostos Fitoquímicos/análise , Plantas/química , Plantas Geneticamente Modificadas/genética , Polifenóis/análise , Terpenos/análise
5.
Plant Sci ; 256: 208-216, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28167034

RESUMO

The resistance to late blight is either qualitative or quantitative in nature. Quantitative resistance is durable, but challenging due to polygenic inheritance. In the present study, the diploid potato genotypes resistant and susceptible to late blight, were profiled for metabolites. Tissue specific metabolite analysis of benzylisoquinoline alkaloids (BIAs) in response to pathogen infection revealed increased accumulation of morphinone, codeine-6-glucuronide and morphine-3-glucuronides. These BIAs are antimicrobial compounds and possibly involved in cell wall reinforcement, especially through cross-linking cell wall pectins. Quantitative reverse transcription-PCR studies revealed higher expressions of TyDC, NCS, COR-2 and StWRKY8 transcription factor genes, in resistant genotypes than in susceptible genotype, following pathogen inoculation. A luciferase transient expression assay confirmed the binding of the StWRKY8 TF to promoters of downstream genes, elucidating a direct regulatory role on BIAs biosynthetic genes. Sequence analysis of StWRKY8 in potato genotypes revealed polymorphism in the WRKY DNA binding domain in the susceptible genotype, which is important for the regulatory function of this gene. A complementation assay of StWRKY8 in Arabidopsis wrky33 mutant background was associated with decreased fungal biomass. In conclusion, StWRKY8 regulates the biosynthesis of BIAs that are both antimicrobial and reinforce cell walls to contain the pathogen to initial infection.


Assuntos
Benzilisoquinolinas/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Phytophthora infestans/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Solanum tuberosum/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Genes de Plantas , Genótipo , Pectinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Polimorfismo Genético , Regiões Promotoras Genéticas , Solanum tuberosum/metabolismo , Fatores de Transcrição/metabolismo
6.
Plant Mol Biol ; 93(3): 247-267, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27844244

RESUMO

KEY MESSAGE: We report plausible disease resistance mechanisms induced by barley resistant genotype CI89831 against Fusarium head blight (FHB) based on metabolo-transcriptomics approach. We identified HvCERK1 as a candidate gene for FHB resistance, which is functional in resistant genotype CI9831 but non-functional in susceptible cultivars H106-371 and Zhedar-2. For the first time, we were able to show a hierarchy of regulatory genes that regulated downstream biosynthetic genes that eventually produced resistance related metabolites that reinforce the cell walls to contain the pathogen progress in plant. The HvCERK1 can be used for replacing in susceptible commercial cultivars, if non-functional, based on genome editing. Fusarium head blight (FHB) management is a great challenge in barley and wheat production worldwide. Though barley genome sequence and advanced omics technologies are available, till date none of the resistance mechanisms has been clearly deciphered. Hence, this study was aimed at identifying candidate gene(s) and elucidating resistance mechanisms induced by barley resistant genotype CI9831 based on integrated metabolomics and transcriptomics approach. Following Fusarium graminearum infection, we identified accumulation of specific set of induced secondary metabolites, belonging to phenylpropanoid, hydroxycinnamic acid (HCAA) and jasmonic acid pathways, and their biosynthetic genes. In association with these, receptor kinases such as chitin elicitor receptor kinase (HvCERK1) and protein kinases such as MAP kinase 3 (HvMPK3) and MAPK substrate 1 (HvMKS1), and transcription factors such as HvERF1/5, HvNAC42, HvWRKY23 and HvWRKY70 were also found upregulated with high fold change. Polymorphism studies across three barley genotypes confirmed the presence of mutations in HvCERK1 gene in two susceptible genotypes, isolating this gene as a potential candidate for FHB resistance. Further, the silencing of functional HvCERK1 gene in the resistant genotype CI9831, followed by gene expression and metabolite analysis revealed its role as an elicitor recognition receptor that triggered downstream regulatory genes, which in turn, regulated downstream metabolic pathway genes to biosynthesize resistance related (RR) metabolites to contain the pathogen to spikelet infection. A putative model on metabolic pathway regulation is proposed.


Assuntos
Quitina/metabolismo , Resistência à Doença/genética , Fusarium/fisiologia , Perfilação da Expressão Gênica/métodos , Hordeum/enzimologia , Hordeum/genética , Metabolômica/métodos , Proteínas de Plantas/genética , Sequência de Aminoácidos , Biomassa , Vias Biossintéticas/genética , Parede Celular/metabolismo , Simulação por Computador , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Genótipo , Hordeum/microbiologia , Sistema de Sinalização das MAP Quinases/genética , Metaboloma/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Propanóis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Metabolismo Secundário/genética , Fatores de Transcrição/metabolismo
7.
PLoS One ; 11(5): e0155851, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27232496

RESUMO

BACKGROUND: Fusarium head blight (FHB) caused by Fusarium graminearum not only causes severe losses in yield, but also reduces quality of wheat grain by accumulating mycotoxins. Breeding for host plant resistance is considered as the best strategy to manage FHB. Resistance in wheat to FHB is quantitative in nature, involving cumulative effects of many genes governing resistance. The poor understanding of genetics and lack of precise phenotyping has hindered the development of FHB resistant cultivars. Though more than 100 QTLs imparting FHB resistance have been reported, none discovered the specific genes localized within the QTL region, nor the underlying mechanisms of resistance. FINDINGS: In our study recombinant inbred lines (RILs) carrying resistant (R-RIL) and susceptible (S-RIL) alleles of QTL-Fhb2 were subjected to metabolome and transcriptome profiling to discover the candidate genes. Metabolome profiling detected a higher abundance of metabolites belonging to phenylpropanoid, lignin, glycerophospholipid, flavonoid, fatty acid, and terpenoid biosynthetic pathways in R-RIL than in S-RIL. Transcriptome analysis revealed up-regulation of several receptor kinases, transcription factors, signaling, mycotoxin detoxification and resistance related genes. The dissection of QTL-Fhb2 using flanking marker sequences, integrating metabolomic and transcriptomic datasets, identified 4-Coumarate: CoA ligase (4CL), callose synthase (CS), basic Helix Loop Helix (bHLH041) transcription factor, glutathione S-transferase (GST), ABC transporter-4 (ABC4) and cinnamyl alcohol dehydrogenase (CAD) as putative resistance genes localized within the QTL-Fhb2 region. CONCLUSION: Some of the identified genes within the QTL region are associated with structural resistance through cell wall reinforcement, reducing the spread of pathogen through rachis within a spike and few other genes that detoxify DON, the virulence factor, thus eventually reducing disease severity. In conclusion, we report that the wheat resistance QTL-Fhb2 is associated with high rachis resistance through additive resistance effects of genes, based on cell wall enforcement and detoxification of DON. Following further functional characterization and validation, these resistance genes can be used to replace the genes in susceptible commercial cultivars, if nonfunctional, based on genome editing to improve FHB resistance.


Assuntos
Resistência à Doença/genética , Fusarium/fisiologia , Perfilação da Expressão Gênica , Metabolômica , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Biomassa , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Transcrição Gênica , Triticum/fisiologia
8.
Crit Rev Biotechnol ; 36(5): 917-30, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26171816

RESUMO

A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as "foundation for twenty-first century crop improvement", a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as "the holy grail" of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered.


Assuntos
Produtos Agrícolas/genética , Marcadores Genéticos , DNA de Plantas/genética , Genes de Plantas , Mutação , Melhoramento Vegetal , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...