Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 606, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030968

RESUMO

BACKGROUND: Dioecy, a sexual system of single-sexual (gynoecious/androecious) individuals, is rare in flowering plants. This rarity may be a result of the frequent transition from dioecy into systems with co-sexual individuals. RESULTS: In this study, co-sexual expression (monoecy and hermaphroditic development), previously thought to be polyploid-specific in Diospyros species, was identified in the diploid D. oleifeara historically. We characterized potential genetic mechanisms that underlie the dissolution of dioecy to monoecy and andro(gyno)monoecy, based on multiscale genome-wide investigations of 150 accessions of Diospyros oleifera. We found all co-sexual plants, including monoecious and andro(gyno)monoecious individuals, possessed the male determinant gene OGI, implying the presence of genetic factors controlling gynoecia development in genetically male D. oleifera. Importantly, discrepancies in the OGI/MeGI module were found in diploid monoecious D. oleifera compared with polyploid monoecious D. kaki, including no Kali insertion on the promoter of OGI, no different abundance of smRNAs targeting MeGI (a counterpart of OGI), and no different expression of MeGI between female and male floral buds. On the contrary, in both single- and co-sexual plants, female function was expressed in the presence of a genome-wide decrease in methylation levels, along with sexually distinct regulatory networks of smRNAs and their targets. Furthermore, a genome-wide association study (GWAS) identified a genomic region and a DUF247 gene cluster strongly associated with the monoecious phenotype and several regions that may contribute to andromonoecy. CONCLUSIONS: Collectively, our findings demonstrate stable breakdown of the dioecious system in D. oleifera, presumably also a result of genomic features of the Y-linked region.


Assuntos
Diospyros , Diospyros/genética , Diploide , Estudo de Associação Genômica Ampla , Genômica , Poliploidia
2.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895041

RESUMO

Persimmon fruit has a high nutritional value and significantly varies between pollination-constant astringent (PCA) and pollination-constant non-astringent (PCNA) persimmons. The astringency type affects sugar, flavonoids, and tannin accumulation and is well known in persimmon fruit. However, the impact of the fruit astringency type on ascorbic acid (AsA) accumulation is limited. In this study, typical PCA varieties ('Huojing' and 'Zhongshi5') and PCNA varieties ('Yohou' and 'Jiro') of persimmon fruit were sampled at four developing stages (S1-S4) to provide valuable information on AsA content variation in PCA and PCNA persimmon. Persimmon fruit is rich in ascorbic acid; the AsA content of the four varieties 'Zhongshi5', 'Huojing', 'Jiro', and 'Youhou' mature fruit reached 104.49, 48.69, 69.69, and 47.48 mg/100 g. Fruit of the same astringency type persimmon showed a similar AsA accumulation pattern. AsA content was significantly higher in PCA than PCNA fruit at S1-S3. The initial KEGG analysis of metabolites showed that galactose metabolism is the major biosynthetic pathway of AsA in persimmon fruit. There were significant differences in galactose pathway-related metabolite content in developing PCA and PCNA fruit, such as Lactose, D-Tagatose, and D-Sorbitol content in PCA being higher than that of PCNA. Combined gene expression and WGCNA analyses showed that the expression of the GME (evm.TU.contig4144.37) gene was higher in PCA-type than in PCNA-type fruit in S1-S3 and exhibited the highest correlation with AsA content (r = 690 **, p < 0.01). Four hub genes, including the DNA methylation gene, methyltransferase gene, F-box, and Actin-like Protein, were identified as potential regulators of the GME gene. These results provide basic information on how astringency types affect AsA accumulation and will provide valuable information for further investigation on AsA content variation in persimmon fruit.


Assuntos
Diospyros , Proantocianidinas , Diospyros/genética , Diospyros/metabolismo , Proantocianidinas/metabolismo , Adstringentes/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Transcriptoma , Frutas/genética , Frutas/metabolismo , Polinização/genética , Ácido Ascórbico/metabolismo , Galactose/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239943

RESUMO

Persimmon (Diospyros kaki) fruit have significant variation between pollination-constant non-astringent (PCNA) and pollination-constant astringent (PCA) persimmons. The astringency type affects not only the soluble tannin concentration but also the accumulation of individual sugars. Thus, we comprehensively investigate the gene expression and metabolite profiles of individual sugars to resolve the formation of flavor differences in PCNA and PCA persimmon fruit. The results showed that soluble sugar, starch content, sucrose synthase, and sucrose invertase were significantly different between PCNA and PCA persimmon fruit. The sucrose and starch metabolism pathway was considerably enriched, and six sugar metabolites involving this pathway were significantly differentially accumulated. In addition, the expression patterns of diferentially expressed genes (such as bglX, eglC, Cel, TPS, SUS, and TREH genes) were significantly correlated with the content of deferentially accumulated metabolites (such as starch, sucrose, and trehalose) in the sucrose and starch metabolism pathway. These results indicated that the sucrose and starch metabolism pathway maintained a central position of sugar metabolism between PCNA and PCA persimmon fruit. Our results provide a theoretical basis for exploring functional genes related to sugar metabolism and provide useful resources for future studies on the flavor differences between PCNA and PCA persimmon fruit.


Assuntos
Diospyros , Proantocianidinas , Transcriptoma , Diospyros/genética , Diospyros/metabolismo , Açúcares/metabolismo , Proantocianidinas/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Adstringentes/metabolismo , Frutas/genética , Frutas/metabolismo , Polinização/genética , Metaboloma , Sacarose/metabolismo , Amido/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Sci Data ; 10(1): 270, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169805

RESUMO

Artificially improving persimmon (Diospyros kaki Thunb.), one of the most important fruit trees, remains challenging owing to the lack of reference genomes. In this study, we generated an allele-aware chromosome-level genome assembly for the autohexaploid persimmon 'Xiaoguotianshi' (Chinese-PCNA type) using PacBio CCS and Hi-C technology. The final assembly contained 4.52 Gb, with a contig N50 value of 5.28 Mb and scaffold N50 value of 44.01 Mb, of which 4.06 Gb (89.87%) of the assembly were anchored onto 90 chromosome-level pseudomolecules comprising 15 homologous groups with 6 allelic chromosomes in each. A total of 153,288 protein-coding genes were predicted, of which 98.60% were functionally annotated. Repetitive sequences accounted for 64.02% of the genome; and 110,480 rRNAs, 12,297 tRNAs, 1,483 miRNAs, and 3,510 snRNA genes were also identified. This genome assembly fills the knowledge gap in the autohexaploid persimmon genome, which is conducive in the study on the regulatory mechanisms underlying the major economically advantageous traits of persimmons and promoting breeding programs.


Assuntos
Cromossomos de Plantas , Diospyros , Genoma de Planta , Alelos , Diospyros/genética , Filogenia , Melhoramento Vegetal , Sequências Repetitivas de Ácido Nucleico
6.
Genes (Basel) ; 14(4)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37107579

RESUMO

Identifying alleles associated with adaptation to new environments will advance our understanding of evolution from the molecular level. Previous studies have found that the Populus davidiana southwest population in East Asia has differentiated from other populations in the range. We aimed to evaluate the contributions of the ancestral-state bases (ASBs) relative to derived bases (DBs) in the local adaptation of P. davidiana in the Yunnan-Guizhou Plateau from a quantitative perspective using whole-genome re-sequencing data from 90 P. davidiana samples from three regions across the species range. Our results showed that the uplift of the Qinghai-Tibet Plateau during the Neogene and associated climate fluctuations during the Middle Pleistocene were likely an important factor in the early divergence of P. davidiana. Highly differentiated genomic regions between populations were inferred to have undergone strong linked natural selection, and ASBs are the chief means by which populations of P. davidiana adapt to novel environmental conditions; however, when adapting to regions with high environmental differences relative to the ancestral range, the proportion of DBs was significantly higher than that of background regions, as ASBs are insufficient to cope with these environments. Finally, a number of genes were identified in the outlier region.


Assuntos
Populus , Populus/genética , Filogenia , China , Genômica , Tibet
7.
Front Plant Sci ; 14: 1046235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909399

RESUMO

Dioecy system is an important strategy for maintaining genetic diversity. The transcription factor MeGI, contributes to dioecy by promoting gynoecium development in Diospyros lotus and D. kaki. However, the function of MeGI in D. oleifera has not been identified. In this study, we confirmed that MeGI, cloned from D. oleifera, repressed the androecium development in Arabidopsis thaliana. Subsequently, chromatin immunoprecipitation-sequencing (ChIP-seq), DNA affinity purification-sequencing (DAP-seq), and RNA-seq were used to uncover the gene expression response to MeGI. The results showed that the genes upregulated and downregulated in response to MeGI were mainly enriched in the circadian rhythm-related and flavonoid biosynthetic pathways, respectively. Additionally, the WRKY DNA-binding protein 28 (WRKY28) gene, which was detected by ChIP-seq, DAP-seq, and RNA-seq, was emphasized. WRKY28 has been reported to inhibit salicylic acid (SA) biosynthesis and was upregulated in MeGI-overexpressing A. thaliana flowers, suggesting that MeGI represses the SA level by increasing the expression level of WRKY28. This was confirmed that SA level was lower in D. oleifera female floral buds than male. Overall, our findings indicate that the MeGI mediates its sex control function in D. oleifera mainly by regulating genes in the circadian rhythm, SA biosynthetic, and flavonoid biosynthetic pathways.

8.
Front Plant Sci ; 14: 1130047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923131

RESUMO

The fruit of the persimmon (Diospyros kaki.) has high economic and nutritional value and is rich in flavonoids. Flavonoids are essential secondary metabolisms in plants. The association between persimmon astringency and changes in the proanthocyanidins (a flavonoid subclass) content is well-known. However, information on the relationships between different astringency types and other flavonoid subclasses and biosynthetic genes is more limited. In this study, an initial correlation analysis between total flavonoids and fruit astringency type, and KEGG analysis of metabolites showed that flavonoid-related pathways were linked to differences between mature pollination-constant non-astringent (PCNA) varieties ('Jiro' and 'Yohou') and pollination-constant astringent (PCA) fruit varieties ('Zhongshi5' and 'Huojing'). Based on these findings, variations in the expression of genes and metabolites associated with flavonoid biosynthesis were investigated between typical PCNA ('Jiro') and PCA ('Huojing') persimmons during fruit development. The flavonoid concentration in 'Huojing' fruit was significantly higher than that of 'Jiro' fruit, especially, in levels of proanthocyanin precursor epicatechin and anthocyanin cyanidin derivatives. Combined WGCNA and KEGG analyses showed that genes such as PAL, C4H, CHI, CHS, F3H, F3'5'H, FLS, DFR, ANR, ANS, and UF3GT in the phenylpropanoid and flavonoid biosynthesis pathways may be significant factors impacting the proanthocyanin precursor and anthocyanin contents. Moreover, interactions between the R2R3MYB (evm.TU.contig7272.598) and WD40 (evm.TU.contig3208.5) transcription factors were found to be associated with the above structural genes. These findings provide essential information on flavonoid biosynthesis and its regulation in the persimmon and lay a foundation for further investigation into how astringency types affect flavor components in PCNA and PCA persimmons.

9.
Sci Rep ; 12(1): 19140, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352175

RESUMO

PA-enhanced content causes astringency in persimmon fruit. PCNA persimmons can lose their astringency naturally and they become edible when still on the tree, which allows for conserves of physical and financial resources. C-PCNA persimmon originates in China. Its deastringency trait primarily depends on decreased PA biosynthesis and PA insolubilization at the late stage of fruit development. Although some genes and transcription factors that may be involved in the deastringency of C-PCNA persimmon have been reported, the expression patterns of these genes during the key deastringency stage are reported less. To investigate the variation in PA contents and the expression patterns of deastringency-related genes during typical C-PCNA persimmon 'Xiaoguo-tianshi' fruit development and ripening, PA content and transcriptional profiling were carried out at five late stages from 70 to 160 DAF. The combinational analysis phenotype, PA content, and DEG enrichment revealed that 120-140 DAF and 140-160 DAF were the critical phases for PA biosynthesis reduction and PA insolubilization, respectively. The expression of PA biosynthesis-associated genes indicated that the downregulation of the ANR gene at 140-160 DAF may be associated with PA biosynthesis and is decreased by inhibiting its precursor cis-flavan-3-ols. We also found that a decrease in acetaldehyde metabolism-associated ALDH genes and an increase in ADH and PDC genes might result in C-PCNA persimmon PA insolubilization. In addition, a few MYB-bHLH-WD40 (MBW) homologous transcription factors in persimmon might play important roles in persimmon PA accumulation. Furthermore, combined coexpression network analysis and phylogenetic analysis of MBW suggested that three putative transcription factors WD40 (evm.TU.contig1.155), MYB (evm.TU.contig8910.486) and bHLH (evm.TU.contig1398.203), might connect and co-regulate both PA biosynthesis and its insolubilization in C-PCNA persimmon. The present study elucidated transcriptional insights into PA biosynthesis and insolubilization during the late development stages based on the C-PCNA D. kaki genome (unpublished). Thus, we focused on PA content variation and the expression patterns of genes involved in PA biosynthesis and insolubilization. Our work has provided additional evidence on previous knowledge and a basis for further exploration of the natural deastringency of C-PCNA persimmon.


Assuntos
Diospyros , Proantocianidinas , Diospyros/genética , Frutas/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Front Plant Sci ; 13: 876086, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693185

RESUMO

Research on crop sexuality is important for establishing systems for germplasm innovation and cultivating improved varieties. In this study, androecious persimmon trees were treated with various concentrations of ethrel (100, 500, and 1,000 mg/L) and zeatin (1, 5, and 10 mg/L) to investigate the morphological, physiological, and molecular characteristics of persimmon. Ethrel at 1,000 mg/L and zeatin at 10 mg/L both significantly reduced the stamen length and pollen grain diameter in androecious trees. Ethrel treatment also led to reduced stamen development with degenerated cellular contents; zeatin treatment promoted the development of arrested pistils via maintaining relatively normal mitochondrial morphology. Both treatments altered carbohydrate, amino acid, and endogenous phytohormone contents, as well as genes associated with hormone production and floral organ development. Thereafter, we explored the combined effects of four chemicals, including ethrel and zeatin, as well as zebularine and 5-azacytidine, both of which are DNA methylation inhibitors, on androecious persimmon flower development. Morphological comparisons showed that stamen length, pollen viability, and pollen grain diameter were significantly inhibited after combined treatment. Large numbers of genes involving in carbohydrate metabolic, mitogen-activated protein kinase (MAPK) signaling, and ribosome pathways, and metabolites including uridine monophosphate (UMP) and cyclamic acid were identified in response to the treatment, indicating complex regulatory mechanisms. An association analysis of transcriptomic and metabolomic data indicated that ribosomal genes have distinct effects on UMP and cyclamic acid metabolites, explaining how male floral buds of androecious persimmon trees respond to these exogenous chemicals. These findings extend the knowledge concerning sexual differentiation in persimmon; they also provide a theoretical basis for molecular breeding, high-yield cultivation, and quality improvement in persimmon.

11.
Front Plant Sci ; 13: 853968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720530

RESUMO

Silvicultural practices greatly improve the economic value of wood products from forests. Stem dimensions, wood density, and stem form are closely linked to end-product performance. This research aimed to examine the effects of stand density and stem height on variables that reflect ring growth and wood properties of Sassafras tzumu stands during the self-thinning phase. Between the ages of 10 and 40 years, the number of stems per hectare has declined from 1,068 to 964 due to density-dependent mortality. As the relative stand density decreased, there were significant reductions in the average tree ring width (5.07-3.51 mm) and increases in latewood proportions (49.88-53.49%) and the density of the annual growth ring (165.60-708.58 kg/m3). Therefore, ring density, earlywood density, and latewood density increased with decreasing relative stand density after self-thinning occurred. Ring width, earlywood width, and latewood width significantly increased from the base to the apex of the stem. Stand density and stem height had additive effects on S. tzumu wood properties during the self-thinning phase. A shift in the growth allocation along the longitudinal stem in response to self-thinning resulted in decreasing radial growth, increasing wood density, and improved stem form. In summary, we found a significant influence of stand density on tree ring growth, wood quality, and stem form of S. tzumu trees during the self-thinning phase.

12.
Plant Biotechnol J ; 20(7): 1257-1273, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35244328

RESUMO

Plants of the Elaeagnaceae family are widely used to treat various health disorders owing to their natural phytochemicals. Seabuckthorn (Hippophae rhamnoides L.) is an economically and ecologically important species within the family with richness of biologically and pharmacologically active substances. Here, we present a chromosome-level genome assembly of seabuckthorn (http://hipp.shengxin.ren/), the first genome sequence of Elaeagnaceae, which has a total length of 849.04 Mb with scaffold N50 of 69.52 Mb and 30 864 annotated genes. Two sequential tetraploidizations with one occurring ~36-41 million years ago (Mya) and the last ~24-27 Mya were inferred, resulting in expansion of genes related to ascorbate and aldarate metabolism, lipid biosynthesis, and fatty acid elongation. Comparative genomic analysis reconstructed the evolutionary trajectories of the seabuckthorn genome with the predicted ancestral genome of 14 proto-chromosomes. Comparative transcriptomic and metabonomic analyses identified some key genes contributing to high content of polyunsaturated fatty acids and ascorbic acid (AsA). Additionally, we generated and analysed 55 whole-genome sequences of diverse accessions, and identified 9.80 million genetic variants in the seabuckthorn germplasms. Intriguingly, genes in selective sweep regions identified through population genomic analysis appeared to contribute to the richness of AsA and fatty acid in seabuckthorn fruits, among which GalLDH, GMPase and ACC, TER were the potentially major-effect causative genes controlling AsA and fatty acid content of the fruit, respectively. Our research offers novel insights into the molecular basis underlying phytochemical innovation of seabuckthorn, and provides valuable resources for exploring the evolution of the Elaeagnaceae family and molecular breeding.


Assuntos
Hippophae , Ácido Ascórbico , Cromossomos , Ácidos Graxos , Hippophae/genética , Metagenômica , Compostos Fitoquímicos
13.
Genomics ; 114(3): 110345, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35321848

RESUMO

Sea buckthorn is a typical drought-resistant tree species. However, there is a general lack of understanding of the pattern of DNA methylation linked with sea buckthorn responses to drought, and its relationship with drought tolerance mechanisms. In this study, we performed whole-transcriptome RNA sequencing and methylome sequencing in response to drought stress to explore differentially expressed mRNAs, miRNAs, lncRNAs and circRNAs in sea buckthorn leaves. Based on predicted DE pairs, we constructed a competitive endogenous RNA network, which revealed potential transcriptional regulatory roles in response to drought stress. The results of methylome sequencing revealed that the DNA methylation level was increased in sea buckthorn leaves under drought stress. We identified 13,405 differentially methylated regions between CK and TR. We found one DMR-associated DEG (Vacuolar-sorting receptor 6) involved in the ABA accumulation pathway. In addition, two DNA methyltransferases (HrMET1 and HrDRM1) were closely associated with drought-induced hypermethylation in sea buckthorn. Together, we firstly conducted a comprehensive transcriptomic and epigenetic analysis of sea buckthorn under drought stress, providing a resource for further study of the potential functions of genes, miRNAs, lncRNAs, circRNAs and DNA methyltransferases.


Assuntos
Hippophae , MicroRNAs , RNA Longo não Codificante , Transcriptoma , Hippophae/genética , Hippophae/metabolismo , Epigenoma , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Secas , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Metiltransferases/genética , DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
14.
Tree Physiol ; 42(6): 1286-1295, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34986489

RESUMO

As a new epigenetic mark, DNA N6-adenine (6mA) methylation plays an important role in various biological processes and has been reported in many prokaryotic organisms in recent years. However, the distribution patterns and functions of DNA 6mA modification have been poorly studied in non-model crops. In this study, we observed that the methylation ratio of 6mA was about 0.016% in the sea buckthorn (Hippophae rhamnoides L.) genome using mass spectrometry. We first constructed a comprehensive 6mA landscape in sea buckthorn genome using nanopore sequencing at single-base resolution. Distribution analysis suggested that 6mA methylated sites were widely distributed in the sea buckthorn chromosomes, which were similar to those in Arabidopsis and rice. Furthermore, reduced 6mA DNA methylation is associated with different expression of genes related to the fruit-ripening process in sea buckthorn. Our results revealed that 6mA DNA modification could be considered an important epigenomic mark and contributes to the fruit ripening process in plants.


Assuntos
Arabidopsis , Hippophae , Adenina/análise , Adenina/metabolismo , Arabidopsis/metabolismo , DNA/análise , DNA/metabolismo , Metilação de DNA , Frutas , Hippophae/química , Hippophae/genética
15.
RNA Biol ; 18(sup2): 794-803, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34806556

RESUMO

In plants, recent studies have revealed that N6-methyladenosine (m6A) methylation of mRNA has potential regulatory functions of this mRNA modification in many biological processes. m6A methyltransferase, m6A demethylase and m6A-binding proteins can cause differential phenotypes, indicating that m6A may have critical roles in the plant. In this study, we depicted the m6A map of sea buckthorn (Hippophae rhamnoides Linn.) transcriptome. Similar to A. thaliana, m6A sites of sea buckthorn transcriptome is significantly enriched around the stop codon and within 3'-untranslated regions (3'UTR). Gene ontology analysis shows that the m6A modification genes are associated with metabolic biosynthesis. In addition, we identified 13,287 different m6A peaks (DMPs) between leaf under drought (TR) and control (CK) treatment. It reveals that m6A has a high level of conservation and has a positive correlation with mRNA abundance in plants. GO and KEGG enrichment results showed that DMP modification DEGs in TR were particularly associated with ABA biosynthesis. Interestingly, our results showed three m6A demethylase (HrALKBH10B, HrALKBH10C and HrALKBH10D) genes were significantly increased following drought stress, which indicated that it may contributed the decreased m6A levels. This exhaustive m6A map provides a basis and resource for the further functional study of mRNA m6A modification in abiotic stress.


Assuntos
Adenosina/análogos & derivados , Secas , Regulação da Expressão Gênica de Plantas , Hippophae/fisiologia , RNA Mensageiro/genética , Estresse Fisiológico , Transcriptoma , Adenosina/genética , Adenosina/metabolismo , Perfilação da Expressão Gênica , Hippophae/classificação , Metilação , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais
16.
BMC Genomics ; 22(1): 203, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33757427

RESUMO

BACKGROUND: Persimmon (Diospyros kaki Thunb.) has various labile sex types, and studying its sex differentiation can improve breeding efficiency. However, studies on sexual regulation patterns in persimmon have focused mainly on monoecy and dioecy, whereas little research has been published on andromonoecy. In order to reveal the sex differentiation regulation mechanism of andromonoecious persimmon, we performed histological and cytological observations, evaluated OGI and MeGI expression and conducted phytohormones assays and mRNA and small RNA transcriptome analyses of the male and hermaphroditic floral buds of the andromonoecious persimmon 'Longyanyeshi 1'. RESULTS: Stages 2 and 4 were identified as the critical morphological periods for sex differentiation of 'Longyanyeshi 1' by histological and cytological observation. At both stages, OGI was differentially expressed in male and hermaphroditic buds, but MeGI was not. This was different from their expressions in dioecious and monoecious persimmons. Meantime, the results of phytohormones assays showed that high IAA, ABA, GA3, and JA levels at stage 2 may have promoted male floral bud differentiation. However, high JA levels at stage 4 and high ZT levels at stages 2 and 4 may have promoted hermaphroditic floral bud differentiation. In these phytohormone biosynthesis and signaling pathways, 52 and 54 differential expression genes (including Aux/IAA, ARFs, DELLA, AHP, A-ARR, B-ARR, CYP735A, CRE1, PP2C, JAZ, MYC2, COI1, CTR1, SIMKK, ACO, and MPK6) were identified, respectively. During the development of male floral buds, five metacaspases genes may have been involved in pistil abortion. In addition, MYB, FAR1, bHLH, WRKY, and MADS transcription factors might play important roles in persimmon floral bud sex differentiation. Noteworthy, miR169v_1, miR169e_3, miR319_1, and miR319 were predicted to contribute to phytohormone biosynthesis and signaling pathways and floral organogenesis and may also regulate floral bud sex differentiation. CONCLUSION: The present study revealed the differences in morphology and phytohormones content between male and hermaphroditic floral buds of 'Longyanyeshi 1' during the process of sex differentiation, and identified a subset of candidate genes and miRNAs putatively associated with its sex differentiation. These findings can provide a foundation for molecular regulatory mechanism researching on andromonoecious persimmon.


Assuntos
Diospyros , MicroRNAs , Diospyros/genética , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Masculino , MicroRNAs/genética , Melhoramento Vegetal , Reguladores de Crescimento de Plantas , RNA Mensageiro , Transcriptoma
17.
Plants (Basel) ; 10(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670570

RESUMO

It is reported that the production of floral sexual phenotype in hexaploid monoecious persimmon (Diospyros kaki) is closely related to a pseudogene called OGI, and a short interspersed nuclear element (SINE)-like insertion (named Kali) in the OGI promoter leads to the gene silence. As a result, DNA methylation level of MeGI promoter determines the development of male or female flowers. However, the molecular mechanism in androecious D. kaki, which only bear male flowers, remains elusive. Here, real-time quantitative polymerase chain reaction (RT-qPCR), molecular cloning, and bisulfite PCR sequencing technique were carried out using 87 materials, including 56 androecious resources, 15 monoecious, and 16 gynoecious cultivars, to investigate the performance of OGI and MeGI on the specific androecious type of D. kaki in China. In conclusion, the Kali insertion was exactly located in the OGI promoter region, and the OGI gene and the Kali sequence were existing and conserved in androecious D. kaki. Meanwhile, we also demonstrated that the MeGI gene was widespread in our investigated samples. Ultimately, our result convincingly provided evidence that the low expression of OGI is probably ascribed to the presence of Kali displaying strong methylation in the OGI promoter, and low expression of MeGI, as well as high DNA methylation level, in the promoter was closely connected with the production of male flowers; this result was consistent with the monoecious persimmon model. Our findings provide predominant genetic aspects for investigation into androecious D. kaki, and future perfecting the sex-determining mechanisms in persimmon.

18.
Mitochondrial DNA B Resour ; 5(1): 982-983, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33366837

RESUMO

The complete chloroplast genome sequence of Hippophae rahmnoides subsp. sinensis was characterized from Illumina pair-end sequencing. The chloroplast genome of H. rahmnoides subsp. sinensis was 156,355 bp in length, containing a large single-copy region (LSC) of 84,002 bp, a small single-copy region (SSC) of 19,055 bp, and two inverted repeat (IR) regions of 26,649 bp. The overall GC content is 36.6%, while the corresponding values of the LSC, SSC, and IR regions are 64.5%, 69.2%, and 60.1%, respectively. The genome contains 131 complete genes, including 88 protein-coding genes, 38 tRNA genes (29 tRNA species), and 8 rRNA genes (4 rRNA species). The neighbour-joining phylogenetic analysis showed that H. rahmnoides subsp. sinensis and H. rahmnoides clustered together as sisters to other H. rahmnoides species.

19.
Gigascience ; 9(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31944244

RESUMO

BACKGROUND: Diospyros oleifera Cheng, of the family Ebenaceae, is an economically important tree. Phylogenetic analyses indicate that D. oleifera is closely related to Diospyros kaki Thunb. and could be used as a model plant for studies of D. kaki. Therefore, development of genomic resources of D. oleifera will facilitate auxiliary assembly of the hexaploid persimmon genome and elucidate the molecular mechanisms of important traits. FINDINGS: The D. oleifera genome was assembled with 443.6 Gb of raw reads using the Pacific Bioscience Sequel and Illumina HiSeq X Ten platforms. The final draft genome was ∼812.3 Mb and had a high level of continuity with N50 of 3.36 Mb. Fifteen scaffolds corresponding to the 15 chromosomes were assembled to a final size of 721.5 Mb using 332 scaffolds, accounting for 88.81% of the genome. Repeat sequences accounted for 54.8% of the genome. By de novo sequencing and analysis of homology with other plant species, 30,530 protein-coding genes with an average transcript size of 7,105.40 bp were annotated; of these, 28,580 protein-coding genes (93.61%) had conserved functional motifs or terms. In addition, 171 candidate genes involved in tannin synthesis and deastringency in persimmon were identified; of these chalcone synthase (CHS) genes were expanded in the D. oleifera genome compared with Diospyros lotus, Camellia sinensis, and Vitis vinifera. Moreover, 186 positively selected genes were identified, including chalcone isomerase (CHI) gene, a key enzyme in the flavonoid-anthocyanin pathway. Phylogenetic tree analysis indicated that the split of D. oleifera and D. lotus likely occurred 9.0 million years ago. In addition to the ancient γ event, a second whole-genome duplication event occurred in D. oleifera and D. lotus. CONCLUSIONS: We generated a high-quality chromosome-level draft genome for D. oleifera, which will facilitate assembly of the hexaploid persimmon genome and further studies of major economic traits in the genus Diospyros.


Assuntos
Cromossomos , Diospyros/genética , Genoma de Planta , Genômica , Biologia Computacional , Duplicação Gênica , Genômica/métodos , Anotação de Sequência Molecular , Família Multigênica , Filogenia , Sequências Repetitivas de Ácido Nucleico
20.
RNA Biol ; 16(3): 354-361, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30681395

RESUMO

As a rising star of noncoding RNA, circular RNAs (circRNAs) have a covalently closed loop structure, which formed by 3'-5' ligation during splicing. A few circRNAs were identified and thought to be transcriptional noise due to cognitive defect over the past 40 years. Recently, with the development of high-throughput RNA sequencing techniques and specific algorithms for circRNA detection and quantification, plenty of potential circRNAs were identified in many species which play important roles in various biological processes. However, researches on circRNAs in fruit ripening process were lacking. Here, we totally identified 2616 circRNAs in sea buckthorn fruit development process, which uniformly distributed in sea buckthorn chromosome. Among them, 1721 (65.8%) circRNAs were arising from the exons of their host genes, 252 circRNAs were identified as the differentially expressed circRNAs (DEcircRNAs) between three different development stages, and 181 (71.8%) DEcircRNAs had sequence similarity with 235 identified circRNAs from five know plant species. Functional annotation revealed that host genes of DEcircRNAs were predicted to be involved in carotenoid biosynthesis, lipid synthesis and plant hormone signal transduction. Additionally, 53 DEcircRNAs were predicted as the corresponding nine miRNAs sponges in sea buckthorn. Divergent reverse-transcription PCR and RT-qPCR were used for validate the differential expression and back-splicing sites of six DEcircRNAs. These results revealed the role of circRNAs in sea buckthorn fruit ripening process and promoted the noncoding RNA researches in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Hippophae/genética , RNA/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , MicroRNAs/genética , Anotação de Sequência Molecular , RNA/química , RNA Circular , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...