Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1321: 343039, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39155104

RESUMO

BACKGROUND: In recent years, environmental pollution has attracted widespread global attention. Among them, environmental problems caused by heavy metal pollution pose a serious threat to human health and ecosystems. Mercury is a common heavy metal pollutant with high toxicity and wide distribution. Excessive intake of Hg2+ can cause permanent and severe damage to the nervous system, respiratory system, and kidneys in the human body. Therefore, developing both accurate and fast detection methods for Hg2+ is of great significance. RESULTS: A sensitive Hg2+ colorimetric sensor is designed based on PtNi nanowires (NWs) and Pt NWs with peroxidase-mimetic activity. PtNi NWs and Pt NWs catalyze the reaction of 3,3', 5,5'-tetramethylbenzidine (TMB) with hydrogen peroxide (H2O2) to produce blue oxidized TMB (oxTMB). The specific interaction of Pt-Hg significantly inhibits the peroxidase-mimetic activity of PtNi NW and Pt NW nanozymes, resulting in a lighter blue color. It is worth noting that compared with specific activity (SA) of Pt NWs (3.31 U/mg), PtNi NWs own superior SA (10.43 U/mg), which inevitably leads to a wider linear range of Hg2+ analysis (1 nM-200 µM) and a lower detection limit (0.6748 nM) for PtNi NWs-based colorimetric sensor, versus linear range (4 nM-5 µM) and LOD of 1.198 nM for Pt NWs-based colorimetric sensor, which are far below the Hg2+ threshold (10 nM) for drinking water set by the US Environmental Protection Agency. SIGNIFICANCE: The two nanozyme colorimetric sensors have been successfully used for the evaluation of Hg2+ in complex river water and tap water. Due to the advantages of simple operation, fast response, and high sensitivity, colorimetric sensors have broad application prospects in environmental monitoring.


Assuntos
Colorimetria , Mercúrio , Nanofios , Níquel , Platina , Mercúrio/análise , Platina/química , Nanofios/química , Níquel/química , Poluentes Químicos da Água/análise , Limite de Detecção , Benzidinas/química , Catálise , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA