Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Med Microbiol ; 314: 151607, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367508

RESUMO

Measles is a highly contagious airborne viral disease. It can lead to serious complications and death and is preventable by vaccination. The live-attenuated measles vaccine (LAMV) derived from a measles virus (MV) isolated in 1954 has been in use globally for six decades and protects effectively by providing a durable humoral and cell-mediated immunity. Our study addresses the temporal stability of epitopes on the viral surface glycoprotein hemagglutinin (H) which is the major target of MV-neutralizing antibodies. We investigated the binding of seven vaccine-induced MV-H-specific monoclonal antibodies (mAbs) to cell-free synthesized MV-H proteins derived from the H gene sequences obtained from a lung specimen of a fatal case of measles pneumonia in 1912 and an isolate from a current case. The binding of four out of seven mAbs to the H protein of both MV strains provides evidence of epitopes that are stable for more than 100 years. The binding of the universally neutralizing mAbs RKI-MV-12b and RKI-MV-34c to the H protein of the 1912 MV suggests the long-term stability of highly conserved epitopes on the MV surface.


Assuntos
Vírus do Sarampo , Sarampo , Humanos , Vírus do Sarampo/genética , Anticorpos Neutralizantes , Testes de Neutralização , Vacina contra Sarampo/genética , Sarampo/prevenção & controle , Anticorpos Antivirais , Epitopos/genética , Hemaglutininas Virais/genética , Anticorpos Monoclonais
2.
Sci Rep ; 13(1): 21846, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071261

RESUMO

Serological assays measuring antibodies against SARS-CoV-2 are key to describe the epidemiology, pathobiology or induction of immunity after infection or vaccination. Of those, multiplex assays targeting multiple antigens are especially helpful as closely related coronaviruses or other antigens can be analysed simultaneously from small sample volumes, hereby shedding light on patterns in the immune response that would otherwise remain undetected. We established a bead-based 17-plex assay detecting antibodies targeting antigens from all coronaviruses pathogenic for humans: SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV strains 229E, OC43, HKU1, and NL63. The assay was validated against five commercial serological immunoassays, a commercial surrogate virus neutralisation test, and a virus neutralisation assay, all targeting SARS-CoV-2. It was found to be highly versatile as shown by antibody detection from both serum and dried blot spots and as shown in three case studies. First, we followed seroconversion for all four endemic HCoV strains and SARS-CoV-2 in an outbreak study in day-care centres for children. Second, we were able to link a more severe clinical course to a stronger IgG response with this 17-plex-assay, which was IgG1 and IgG3 dominated. Finally, our assay was able to discriminate recent from previous SARS-CoV-2 infections by calculating the IgG/IgM ratio on the N antigen targeting antibodies. In conclusion, due to the comprehensive method comparison, thorough validation, and the proven versatility, our multiplex assay is a valuable tool for studies on coronavirus serology.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Coronavírus da Síndrome Respiratória do Oriente Médio , Criança , Humanos , SARS-CoV-2 , Imunidade Humoral , COVID-19/diagnóstico , COVID-19/epidemiologia , Imunoglobulina G , Anticorpos Antivirais
3.
Viruses ; 15(12)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38140671

RESUMO

Sporulation is a finely regulated morphogenetic program important in the ecology and epidemiology of Clostridium botulinum. Exogenous elements disrupting sporulation-associated genes contribute to sporulation regulation and introduce diversity in the generally conserved sporulation programs of endospore formers. We identified a novel prophage-like DNA segment, termed the yin element, inserted within yabG, encoding a sporulation-specific cysteine protease, in an environmental isolate of C. botulinum. Bioinformatic analysis revealed that the genetic structure of the yin element resembles previously reported mobile intervening elements associated with sporulation genes. Within a pure C. botulinum culture, we observed two subpopulations of cells with the yin element either integrated into the yabG locus or excised as a circular DNA molecule. The dynamics between the two observed conformations of the yin element was growth-phase dependent and likely mediated by recombination events. The yin element was not required for sporulation by C. botulinum but triggered an earlier entry into sporulation than in a related isolate lacking this element. So far, the yin element has not been found in any other C. botulinum strains or other endospore-forming species. It remains to be demonstrated what kind of competitive edge it provides for C. botulinum survival and persistence.


Assuntos
Clostridium botulinum , Clostridium botulinum/genética , Prófagos/genética , Proteínas de Bactérias/genética
4.
FEBS Lett ; 597(4): 524-537, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653893

RESUMO

Botulinum neurotoxins (BoNTs) are among the most lethal toxins known to humans, comprising seven established serotypes termed BoNT/A-G encoded in two types of gene clusters (ha and orfX) in BoNT-producing clostridia. The ha cluster encodes four non-toxic neurotoxin-associated proteins (NAPs) that assemble with BoNTs to protect and enhance their oral toxicity. However, the structure and function of the orfX-type NAPs remain largely unknown. Here, we report the crystal structures for OrfX1, OrfX2, and an OrfX1-OrfX3 complex, which are encoded in the orfX cluster of a BoNT/E1-producing Clostridium botulinum strain associated with human foodborne botulism. These structures lay the foundation for future studies on the potential roles of OrfX proteins in oral intoxication and pathogenesis of BoNTs.


Assuntos
Toxinas Botulínicas Tipo A , Clostridium botulinum , Humanos , Clostridium botulinum/genética , Clostridium botulinum/química , Clostridium botulinum/metabolismo , Toxinas Botulínicas Tipo A/metabolismo , Família Multigênica
5.
Anaerobe ; 77: 102631, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055566
6.
Foods ; 11(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681327

RESUMO

Clostridium botulinum causes severe foodborne intoxications by producing a potent neurotoxin. Challenge studies with this pathogen are an important tool to ensure the safety of new processing techniques and newly designed or modified foods, but they are hazardous and complicated by the lack of an effective selective counting medium. Therefore, this study aimed to develop selectable nontoxic surrogate strains for group II, or nonproteolytic, C. botulinum, which are psychotropic and hence of particular concern in mildly treated, refrigerated foods. Thirty-one natural nontoxic nonproteolytic strains, 16 of which were isolated in this work, were characterized in detail, revealing that 28 strains were genomically and phenotypically indistinguishable from toxic strains. Five strains, representing the genomic and phenotypic diversity of group II C. botulinum, were selected and successfully equipped with an erythromycin (Em) resistance marker in a defective structural phage gene without altering phenotypic features. Finally, a selective medium containing Em, cycloserine (Cs), gentamicin (Gm), and lysozyme (Ly) was developed, which inhibited the background microbiota of commercial cooked ham, chicken filet, and salami, but supported spore germination and growth of the Em-resistant surrogate strains. The surrogates developed in this work are expected to facilitate food challenge studies with nonproteolytic C. botulinum for the food industry and can also provide a safe alternative for basic C. botulinum research.

7.
mBio ; 13(3): e0238421, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35499308

RESUMO

In early life, the immature human gut microbiota is prone to colonization by pathogens that are usually outcompeted by mature microbiota in the adult gut. Colonization and neurotoxin production by a vegetative Clostridium botulinum culture in the gut of an infant can lead to flaccid paralysis, resulting in a clinical outcome known as infant botulism, a potentially life-threatening condition. Beside host factors, little is known of the ecology, colonization, and adaptation of C. botulinum to the gut environment. In our previous report, an infant with intestinal botulism was shown to be colonized by neurotoxigenic C. botulinum culture for 7 months. In an effort to gain ecological and evolutionary insights into this unusually long gut colonization by C. botulinum, we analyzed and compared the genomes of C. botulinum isolates recovered from the infant feces during the course of intoxication and isolates from the infant household dust. A number of observed mutations and genomic alterations pinpointed at phenotypic traits that may have promoted colonization and adaptation to the gut environment and to the host. These traits include motility, quorum-sensing, sporulation, and carbohydrate metabolism. We provide novel perspectives and suggest a tentative model of the pathogenesis of C. botulinum in infant botulism. IMPORTANCE While the clinical aspects of infant botulism and the mode of action of BoNT have been thoroughly investigated, little is known on the pathogenesis and adaptive mechanisms of C. botulinum in the gut. Here, we provide for the first time a comprehensive view on the genomic dynamics and plasticity of C. botulinum over time in a case of infant botulism. The genomic and phenotypic analysis of C. botulinum isolates collected during the disease course offers an unprecedented view of C. botulinum ecology, evolution, and pathogenesis and may be instrumental in developing novel strategies for prevention and treatment of toxicoinfectious botulism.


Assuntos
Botulismo , Clostridium botulinum , Microbioma Gastrointestinal , Botulismo/etiologia , Clostridium botulinum/genética , Fezes , Genômica , Humanos , Lactente
8.
Sci Rep ; 12(1): 1790, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110559

RESUMO

Botulinum neurotoxins (BoNTs), produced by the spore-forming bacterium Clostridium botulinum, cause botulism, a rare but fatal illness affecting humans and animals. Despite causing a life-threatening disease, BoNT is a multipurpose therapeutic. Nevertheless, as the most potent natural toxin, BoNT is classified as a Select Agent in the US, placing C. botulinum research under stringent governmental regulations. The extreme toxicity of BoNT, its impact on public safety, and its diverse therapeutic applications urge to devise safe solutions to expand C. botulinum research. Accordingly, we exploited CRISPR/Cas9-mediated genome editing to introduce inactivating point mutations into chromosomal bont/e gene of C. botulinum Beluga E. The resulting Beluga Ei strain displays unchanged physiology and produces inactive BoNT (BoNT/Ei) recognized in serological assays, but lacking biological activity detectable ex- and in vivo. Neither native single-chain, nor trypsinized di-chain form of BoNT/Ei show in vivo toxicity, even if isolated from Beluga Ei sub-cultured for 25 generations. Beluga Ei strain constitutes a safe alternative for the BoNT research necessary for public health risk management, the development of food preservation strategies, understanding toxinogenesis, and for structural BoNT studies. The example of Beluga Ei generation serves as template for future development of C. botulinum producing different inactive BoNT serotypes.


Assuntos
Toxinas Botulínicas/biossíntese , Sistemas CRISPR-Cas , Clostridium botulinum/metabolismo , Edição de Genes , Toxinas Botulínicas/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Clostridium botulinum/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genótipo , Fenótipo , Mutação Puntual
10.
Toxins (Basel) ; 13(4)2021 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919561

RESUMO

Abrin, the toxic lectin from the rosary pea plant Abrus precatorius, has gained considerable interest in the recent past due to its potential malevolent use. However, reliable and easy-to-use assays for the detection and discrimination of abrin from related plant proteins such as Abrus precatorius agglutinin or the homologous toxin ricin from Ricinus communis are sparse. To address this gap, a panel of highly specific monoclonal antibodies was generated against abrin and the related Abrus precatorius agglutinin. These antibodies were used to establish two sandwich ELISAs to preferentially detect abrin or A. precatorius agglutinin (limit of detection 22 pg/mL for abrin; 35 pg/mL for A. precatorius agglutinin). Furthermore, an abrin-specific lateral flow assay was developed for rapid on-site detection (limit of detection ~1 ng/mL abrin). Assays were validated for complex food, environmental and clinical matrices illustrating broad applicability in different threat scenarios. Additionally, the antibodies turned out to be suitable for immuno-enrichment strategies in combination with mass spectrometry-based approaches for unambiguous identification. Finally, we were able to demonstrate for the first time how the developed assays can be applied to detect, identify and quantify abrin from a clinical sample derived from an attempted suicide case involving A. precatorius.


Assuntos
Abrina/análise , Abrus/química , Anticorpos Monoclonais/imunologia , Ensaio de Imunoadsorção Enzimática , Lectinas de Plantas/análise , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Abrina/imunologia , Abrina/intoxicação , Abrus/imunologia , Especificidade de Anticorpos , Fezes/química , Humanos , Limite de Detecção , Lectinas de Plantas/imunologia , Reprodutibilidade dos Testes , Tentativa de Suicídio
11.
Toxins (Basel) ; 13(4)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917845

RESUMO

Clostridium perfringens enterotoxin (CPE) regularly causes food poisoning and antibiotic-associated diarrhea; therefore, reliable toxin detection is crucial. To this aim, we explored stationary and mobile strategies to detect CPE either exclusively by monoclonal antibodies (mAbs) or, alternatively, by toxin-enrichment via the cellular receptor of CPE, claudin-4, and mAb detection. Among the newly generated mAbs, we identified nine CPE-specific mAbs targeting five distinct epitopes, among them mAbs recognizing CPE bound to claudin-4 or neutralizing CPE activity in vitro. In surface plasmon resonance experiments, all mAbs and claudin-4 revealed excellent affinities towards CPE, ranging from 0.05 to 2.3 nM. Integrated into sandwich enzyme-linked immunosorbent assays (ELISAs), the most sensitive mAb/mAb and claudin-4/mAb combinations achieved similar detection limits of 0.3 pg/mL and 1.0 pg/mL, respectively, specifically detecting recombinant CPE from spiked feces and native CPE from 30 different C. perfringens culture supernatants. The implementation of mAb- and receptor-based ELISAs into a mobile detection platform enabled the fast detection of CPE, which will be helpful in clinical laboratories to diagnose diarrhea of assumed bacterial origin. In conclusion, we successfully employed an endogenous receptor and novel high affinity mAbs for highly sensitive and specific CPE-detection. These tools will be useful for both basic and applied research.


Assuntos
Anticorpos Monoclonais , Claudina-4/metabolismo , Infecções por Clostridium/diagnóstico , Clostridium perfringens/metabolismo , Enterotoxinas/análise , Ensaio de Imunoadsorção Enzimática , Doenças Transmitidas por Alimentos/diagnóstico , Animais , Afinidade de Anticorpos , Especificidade de Anticorpos , Automação Laboratorial , Claudina-4/genética , Claudina-4/imunologia , Infecções por Clostridium/microbiologia , Clostridium perfringens/genética , Clostridium perfringens/imunologia , Enterotoxinas/genética , Enterotoxinas/imunologia , Enterotoxinas/metabolismo , Mapeamento de Epitopos , Epitopos , Fezes , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Limite de Detecção , Camundongos , Valor Preditivo dos Testes , Ligação Proteica , Reprodutibilidade dos Testes , Fluxo de Trabalho
12.
Toxins (Basel) ; 13(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450857

RESUMO

The toxin abrin found in the seeds of Abrus precatorius has attracted much attention regarding criminal and terroristic misuse over the past decade. Progress in analytical methods for a rapid and unambiguous identification of low abrin concentrations in complex matrices is essential. Here, we report on the development and evaluation of a MALDI-TOF mass spectrometry approach for the fast, sensitive and robust abrin isolectin identification, differentiation and quantification in complex food matrices. The method combines immunoaffinity-enrichment with specific abrin antibodies, accelerated trypsin digestion and the subsequent MALDI-TOF analysis of abrin peptides using labeled peptides for quantification purposes. Following the optimization of the workflow, common and isoform-specific peptides were detected resulting in a ~38% sequence coverage of abrin when testing ng-amounts of the toxin. The lower limit of detection was established at 40 ng/mL in milk and apple juice. Isotope-labeled versions of abundant peptides with high ionization efficiency were added. The quantitative evaluation demonstrated an assay variability at or below 22% with a linear range up to 800 ng/mL. MALDI-TOF mass spectrometry allows for a simple and fast (<5 min) analysis of abrin peptides, without a time-consuming peptide chromatographic separation, thus constituting a relevant alternative to liquid chromatography-tandem mass spectrometry.


Assuntos
Abrina/análise , Contaminação de Alimentos/análise , Imunoensaio/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Toxinas Biológicas/análise , Abrus , Marcação por Isótopo/métodos , Proteínas de Plantas/análise , Sementes/química , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
13.
Sci Rep ; 9(1): 5531, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940836

RESUMO

Botulinum neurotoxins (BoNTs) are the most potent toxins known and cause the life threatening disease botulism. Sensitive and broad detection is extremely challenging due to the toxins' high potency and molecular heterogeneity with several serotypes and more than 40 subtypes. The toxicity of BoNT is mediated by enzymatic cleavage of different synaptic proteins involved in neurotransmitter release at serotype-specific cleavage sites. Hence, active BoNTs can be monitored and distinguished in vitro by detecting their substrate cleavage products. In this work, we developed a comprehensive panel of monoclonal neoepitope antibodies (Neo-mAbs) highly specific for the newly generated N- and/or C-termini of the substrate cleavage products of BoNT serotypes A to F. The Neo-mAbs were implemented in a set of three enzymatic assays for the simultaneous detection of two BoNT serotypes each by monitoring substrate cleavage on colour-coded magnetic Luminex-beads. For the first time, all relevant serotypes could be detected in parallel by a routine in vitro activity assay in spiked serum and food samples yielding excellent detection limits in the range of the mouse bioassay or better (0.3-80 pg/mL). Therefore, this work represents a major step towards the replacement of the mouse bioassay for botulism diagnostics.


Assuntos
Anticorpos Monoclonais/metabolismo , Toxinas Botulínicas/análise , Clostridium botulinum/isolamento & purificação , Animais , Toxinas Botulínicas/química , Toxinas Botulínicas/imunologia , Toxinas Botulínicas Tipo A/análise , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/imunologia , Clostridium botulinum/imunologia , Epitopos/imunologia , Limite de Detecção , Camundongos , Análise em Microsséries , Sorogrupo
15.
Toxins (Basel) ; 10(8)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071628

RESUMO

In the recent past, about 40 botulinum neurotoxin (BoNT) subtypes belonging to serotypes A, B, E, and F pathogenic to humans were identified among hundreds of independent isolates. BoNTs are the etiological factors of botulism and represent potential bioweapons; however, they are also recognized pharmaceuticals for the efficient counteraction of hyperactive nerve terminals in a variety of human diseases. The detailed biochemical characterization of subtypes as the basis for development of suitable countermeasures and possible novel therapeutic applications is lagging behind the increase in new subtypes. Here, we report the primary structure of a ninth subtype of BoNT/F. Its amino-acid sequence diverges by at least 8.4% at the holotoxin and 13.4% at the enzymatic domain level from all other known BoNT/F subtypes. We found that BoNT/F9 shares the scissile Q58/K59 bond in its substrate vesicle associated membrane protein 2 with the prototype BoNT/F1. Comparative biochemical analyses of four BoNT/F enzymatic domains showed that the catalytic efficiencies decrease in the order F1 > F7 > F9 > F6, and vary by up to a factor of eight. KM values increase in the order F1 > F9 > F6 ≈ F7, whereas kcat decreases in the order F7 > F1 > F9 > F6. Comparative substrate scanning mutagenesis studies revealed a unique pattern of crucial substrate residues for each subtype. Based upon structural coordinates of F1 bound to an inhibitor polypeptide, the mutational analyses suggest different substrate interactions in the substrate binding channel of each subtype.


Assuntos
Toxinas Botulínicas/química , Peptídeos/química , Proteína 2 Associada à Membrana da Vesícula/química , Catálise , Especificidade por Substrato
16.
Anaerobe ; 49: 71-77, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29287670

RESUMO

Clostridium botulinum group III is mainly responsible for botulism in animals. It could lead to high animal mortality rates and, therefore, represents a major environmental and economic concern. Strains of this group harbor the botulinum toxin locus on an unstable bacteriophage. Since the release of the first complete C. botulinum group III genome sequence (strain BKT015925), strains have been found to contain others mobile elements encoding for toxin components. In this study, seven assays targeting toxin genes present on the genetic mobile elements of C. botulinum group III were developed with the objective to better characterize C. botulinum group III strains. The investigation of 110 C. botulinum group III strains and 519 naturally contaminated samples collected during botulism outbreaks in Europe showed alpha-toxin and C2-I/C2-II markers to be systematically associated with type C/D bont-positive samples, which may indicate an important role of these elements in the pathogenicity mechanisms. On the contrary, bont type D/C strains and the related positive samples appeared to contain almost none of the markers tested. Interestingly, 31 bont-negative samples collected on farms after a botulism outbreak revealed to be positive for some of the genetic mobile elements tested. This suggests loss of the bont phage, either in farm environment after the outbreak or during laboratory handling.


Assuntos
Botulismo/microbiologia , Botulismo/veterinária , Clostridium botulinum/genética , Sequências Repetitivas Dispersas , Animais , Toxinas Botulínicas/metabolismo , Clostridium botulinum/classificação , Clostridium botulinum/isolamento & purificação , Clostridium botulinum/metabolismo , Microbiologia Ambiental , Humanos
17.
Euro Surveill ; 22(32)2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28816652

RESUMO

A case of food-borne botulism occurred in Slovakia in 2015. Clostridium botulinum type A was isolated from three nearly empty commercial hummus tubes. The product, which was sold in Slovakia and the Czech Republic, was withdrawn from the market and a warning was issued immediately through the European Commission's Rapid Alert System for Food and Feed (RASFF). Further investigation revealed the presence of botulinum neurotoxin (BoNT) subtype BoNT/A3, a very rare subtype implicated in only one previous outbreak (Loch Maree in Scotland, 1922). It is the most divergent subtype of BoNT/A with 15.4% difference at the amino acid level compared with the prototype BoNT/A1. This makes it more prone to evading immunological and PCR-based detection. It is recommended that testing laboratories are advised that this subtype has been associated with food-borne botulism for the second time since the first outbreak almost 100 years ago, and to validate their immunological or PCR-based methods against this divergent subtype.


Assuntos
Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/metabolismo , Botulismo/diagnóstico , Botulismo/epidemiologia , Clostridium botulinum tipo A/isolamento & purificação , Surtos de Doenças , Botulismo/microbiologia , Clostridium botulinum tipo A/genética , República Tcheca/epidemiologia , Humanos , Reação em Cadeia da Polimerase , Eslováquia/epidemiologia
18.
J Avian Med Surg ; 31(4): 359-363, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29327957

RESUMO

Fatal clostridial infections and clostridial toxicoses are common in birds. Most fatalities are associated with toxin production and progress rapidly, often within 24 hours of infection. We describe an unusual and protracted course of disease in 6 captive brown pelicans ( Pelecanus occidentalis), which was believed to result from toxicosis by toxovar A produced by a mixed infection with Clostridium sordellii and Clostridium perfringens. Although the first death in the group occurred 3 days after signs of illness were documented, the remaining birds died over a 38-day period despite aggressive antibiotic and supportive therapy. Although the birds presented with classic signs of botulism, Clostridium botulinum was not identified in any tissues or environmental samples. Postmortem findings in all pelicans included extensive subacute myonecrosis, enteritis, and nonsuppurative hepatitis. Alpha-toxins and sordellilysin genes from C perfringens and C sordelli isolates, respectively, were detected via polymerase chain reaction. The source of the pathogenic bacteria was sediment within a water basin inside the affected birds' enclosure.


Assuntos
Aves , Infecções por Clostridium/veterinária , Clostridium/isolamento & purificação , Surtos de Doenças/veterinária , Animais , Infecções por Clostridium/microbiologia , Infecções por Clostridium/mortalidade , Clostridium perfringens/isolamento & purificação , Feminino , Masculino
19.
Analyst ; 141(18): 5281-97, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27353114

RESUMO

Botulinum neurotoxin (BoNT) serotypes C and D and their mosaic variants CD and DC cause severe cases of botulism in animal husbandry and wildlife. Epidemiological data on the exact serotype or toxin variant causing outbreaks are rarely available, mainly because of their high sequence identity and the lack of fast and specific screening tools to detect and differentiate the four similar toxins. To fill this gap, we developed four highly specific sandwich enzyme-linked immunosorbent assays (ELISAs) able to detect and differentiate botulinum neurotoxins type BoNT/C, D, CD, and DC based on four distinct combinations of specific monoclonal antibodies targeting both conserved and divergent subdomains of the four toxins. Here, highly sensitive detection with detection limits between 2 and 24 pg mL(-1) was achieved. The ELISAs were extensively validated and results were compared with data obtained by quantitative real-time PCR using a panel of Clostridium botulinum strains, real sample materials from veterinary botulism outbreaks, and non-BoNT-producing Clostridia. Additionally, in order to verify the results obtained by ELISA screening, the new monoclonal antibodies were used for BoNT enrichment and subsequent detection (i) on a functional level by endopeptidase mass spectrometry (Endopep-MS) assays and (ii) on a protein sequence level by LC-MS/MS spectrometry. Based on all technical information gathered in the validation study, the four differentiating ELISAs turned out to be highly reliable screening tools for the rapid analysis of veterinary botulism cases and should aid future field investigations of botulism outbreaks and the acquisition of epidemiological data.


Assuntos
Toxinas Botulínicas/classificação , Ensaio de Imunoadsorção Enzimática , Espectrometria de Massas , Sequência de Aminoácidos , Animais , Clostridium botulinum , Sorogrupo
20.
PLoS One ; 11(3): e0150110, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930499

RESUMO

Orthopoxvirus species like cowpox, vaccinia and monkeypox virus cause zoonotic infections in humans worldwide. Infections often occur in rural areas lacking proper diagnostic infrastructure as exemplified by monkeypox, which is endemic in Western and Central Africa. While PCR detection requires demanding equipment and is restricted to genome detection, the evidence of virus particles can complement or replace PCR. Therefore, an easily distributable and manageable antigen capture enzyme-linked immunosorbent assay (ELISA) for the detection of orthopoxviruses was developed to facilitate particle detection. By comparing the virus particle binding properties of polyclonal antibodies developed against surface-exposed attachment or fusion proteins, the surface protein A27 was found to be a well-bound, highly immunogenic and exposed target for antibodies aiming at virus particle detection. Subsequently, eight monoclonal anti-A27 antibodies were generated and characterized by peptide epitope mapping and surface plasmon resonance measurements. All antibodies were found to bind with high affinity to two epitopes at the heparin binding site of A27, toward either the N- or C-terminal of the crucial KKEP-segment of A27. Two antibodies recognizing different epitopes were implemented in an antigen capture ELISA. Validation showed robust detection of virus particles from 11 different orthopoxvirus isolates pathogenic to humans, with the exception of MVA, which is apathogenic to humans. Most orthopoxviruses could be detected reliably for viral loads above 1 × 103 PFU/mL. To our knowledge, this is the first solely monoclonal and therefore reproducible antibody-based antigen capture ELISA able to detect all human pathogenic orthopoxviruses including monkeypox virus, except variola virus which was not included. Therefore, the newly developed antibody-based assay represents important progress towards feasible particle detection of this important genus of viruses.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/imunologia , Orthopoxvirus/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Orthopoxvirus/genética , Orthopoxvirus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...