Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901844

RESUMO

Histone acetylation is the earliest and most well-characterized of post-translation modifications. It is mediated by histone acetyltransferases (HAT) and histone deacetylases (HDAC). Histone acetylation could change the chromatin structure and status and further regulate gene transcription. In this study, nicotinamide, a histone deacetylase inhibitor (HDACi), was used to enhance the efficiency of gene editing in wheat. Transgenic immature and mature wheat embryos harboring a non-mutated GUS gene, the Cas9 and a GUS-targeting sgRNA were treated with nicotinamide in two concentrations (2.5 and 5 mM) for 2, 7, and 14 days in comparison with a no-treatment control. The nicotinamide treatment resulted in GUS mutations in up to 36% of regenerated plants, whereas no mutants were obtained from the non-treated embryos. The highest efficiency was achieved when treated with 2.5 mM nicotinamide for 14 days. To further validate the impact of nicotinamide treatment on the effectiveness of genome editing, the endogenous TaWaxy gene, which is responsible for amylose synthesis, was tested. Utilizing the aforementioned nicotinamide concentration to treat embryos containing the molecular components for editing the TaWaxy gene, the editing efficiency could be increased to 30.3% and 13.3%, respectively, for immature and mature embryos in comparison to the 0% efficiency observed in the control group. In addition, nicotinamide treatment during transformation progress could also improve the efficiency of genome editing approximately threefold in a base editing experiment. Nicotinamide, as a novel approach, may be employed to improve the editing efficacy of low-efficiency genome editing tools such as base editing and prime editing (PE) systems in wheat.


Assuntos
Edição de Genes , Triticum , Edição de Genes/métodos , Triticum/genética , Sistemas CRISPR-Cas , Histonas/genética , Mutação
4.
Front Genet ; 13: 873850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601488

RESUMO

The Nudum (Nud) gene controls the caryopsis type of cereal crops by regulating lipid biosynthetic pathways. Based on the HvNud sequence and its homologous gene sequences in wheat, a conserved sgRNA was designed to obtain the mutants from the barley variety "Vlamingh" and the wheat variety "Fielder" via Agrobacterium-mediated transformation. A total of 19 and 118 transgenic plants were obtained, and 11 and 61 mutant plants were identified in T0 transgenic plants in barley and wheat after PCR-RE detection, and the editing efficiencies of the targeted gene were 57.9 and 51.7% in barley and wheat, respectively. The grain shape of the barley mutants was naked. Five different combinations of mutations for wheat TaNud genes were identified in the T0 generation, and their homozygous-edited plants were obtained in the T1 generation. Interestingly, the conjoined plants in which one plant has different genotypes were first identified. The different tillers in an individual T0 plant showed independent transgenic or mutant events in both barley and wheat, and the different genotypes can stably inherit into T1 generation, indicating that the T0 transgenic plants were the conjoined type. In addition, we did not find any off-target mutations in both barley and wheat. A candidate method for detecting putative-edited wheat plants was suggested to avoid losing mutations in this investigation. This study provides not only materials for studying the function of the Nud gene in barley and wheat but also a system for detecting the mutants in wheat.

6.
Nat Plants ; 8(2): 110-117, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35027699

RESUMO

Although great progress has been achieved regarding wheat genetic transformation technology in the past decade1-3, genotype dependency, the most impactful factor in wheat genetic transformation, currently limits the capacity for wheat improvement by transgenic integration and genome-editing approaches. The application of regeneration-related genes during in vitro culture could potentially contribute to enhancement of plant transformation efficiency4-11. In the present study, we found that overexpression of the wheat gene TaWOX5 from the WUSCHEL family dramatically increases transformation efficiency with less genotype dependency than other methods. The expression of TaWOX5 in wheat calli prohibited neither shoot differentiation nor root development. Moreover, successfully transformed transgenic wheat plants can clearly be recognized based on a visible botanic phenotype, relatively wider flag leaves. Application of TaWOX5 improved wheat immature embryo transformation and regeneration. The use of TaWOX5 in improvement of transformation efficiency also showed promising results in Triticum monococcum, triticale, rye, barley and maize.


Assuntos
Hordeum , Triticum , Genótipo , Hordeum/genética , Plantas Geneticamente Modificadas/genética , Transformação Genética , Triticum/genética
7.
Int J Biol Macromol ; 196: 131-143, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34942204

RESUMO

Wheat protein disulfide isomerase (PDI) is involved in the formation of glutenin macropolymers (GMP) and the correct folding and accumulation of storage proteins in endosperm. In present study, seven types of homozygous TaPDI gene edited mutants were obtained by CRISPR/Cas9 technology, which were confirmed by PCR-RE and sequencing. Compared with other mutants and wild type (WT), the grain length and width in mutant PDI-abd-6 which was edited for the three TaPDI homoeologous genes were reduced, and the grain middle parts were slumped. The GMP size in PDI-abd-6 was not significantly different from that in WT, whereas the accumulation of protein bodies (PBs) increased during grain development. The endosperm cells became denser in PDI-abd-6 without sheet-like structure, and the expression level of TaBiP gene was significantly decreased. Particularly, the GMP content in PDI-abd-6 is also decreased significantly. The basic bread and flour rheological parameters in the mutant were negatively changed compared with those in WT. Our results indicated that TaPDI genes affects wheat flour-processing quality by the order of TaPDI-4B, TaPDI-4D, and TaPDI-4A from high to low; the expression of either one TaPDI could be enough to maintain the GMP accumulation and processing properties of wheat dough.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Mutação , Proteínas de Plantas/genética , Isomerases de Dissulfetos de Proteínas/genética , Triticum/genética , Grão Comestível , Regulação da Expressão Gênica de Plantas , Mutação INDEL , Fenótipo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Isomerases de Dissulfetos de Proteínas/metabolismo , Transformação Genética , Triticum/química , Triticum/metabolismo
8.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502234

RESUMO

The WOX family is a group of plant-specific transcription factors which regulate plant growth and development, cell division and differentiation. From the available genome sequence databases of nine Triticeae species, 199 putative WOX genes were identified. Most of the identified WOX genes were distributed on the chromosomes of homeologous groups 1 to 5 and originated via the orthologous evolution approach. Parts of WOX genes in Triticum aestivum were confirmed by the specific PCR markers using a set of Triticum. durum-T. aestivum genome D substitution lines. All of these identified WOX proteins could be grouped into three clades, similar to those in rice and Arabidopsis. WOX family members were conserved among these Triticeae plants; all of them contained the HOX DNA-binding homeodomain, and WUS clade members contained the characteristic WUS-box motif, while only WUS and WOX9 contained the EAR motif. The RNA-seq and qPCR analysis revealed that the TaWOX genes had tissue-specific expression feature. From the expression patterns of TaWOX genes during immature embryo callus production, TaWOX9 is likely closely related with the regulation of regeneration process in T. aestivum. The findings in this study could provide a basis for evolution and functional investigation and practical application of the WOX family genes in Triticeae species.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Triticum/genética , Sequência de Aminoácidos , Estudo de Associação Genômica Ampla , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
9.
Plant Cell Rep ; 40(7): 1155-1170, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33950277

RESUMO

KEY MESSAGE: The drought and salt tolerances of wheat were enhanced by ectopic expression of the Arabidopsis ornithine aminotransferase (AtOAT) encoded gene. The OAT was confirmed to play a role in proline biosynthesis in wheat. Proline (Pro) accumulation is a common response to both abiotic and biotic stresses in plants. Ornithine aminotransferase (OAT) is pyridoxal-5-phosphate dependent enzyme involved in plant proline biosynthesis. During stress condition, proline is synthesized via glutamate and ornithine pathways. The OAT is the key enzyme in ornithine pathway. In this study, an OAT gene AtOAT from Arabidopsis was expressed in wheat for its functional characterization under drought, salinity, and heat stress conditions. We found that the expression of AtOAT enhanced the drought and salt stress tolerances of wheat by increasing the proline content and peroxidase activity. In addition, it was confirmed that the expression of AtOAT also played a partial tolerance to heat stress in the transgenic wheat plants. Moreover, quantitative real-time PCR (qRT-PCR) analysis showed that the transformation of AtOAT up-regulated the expression of the proline biosynthesis associated genes TaOAT, TaP5CS, and TaP5CR, and down-regulated that of the proline catabolism related gene TaP5CDH in the transgenic plants under stress conditions. Moreover, the genes involved in ornithine pathway (Orn-OAT-P5C/GSA-P5CR-Pro) were up-regulated along with the up-regulation of those genes involved in glutamate pathway (Glu-P5CS-P5C/GSA-P5CR-Pro). Therefore, we concluded that the expression of AtOAT enhanced wheat abiotic tolerance via modifying the proline biosynthesis by up-regulating the expression of the proline biosynthesis-associated genes and down-regulating that of the proline catabolic gene under stresses condition.


Assuntos
Proteínas de Arabidopsis/genética , Ornitina-Oxo-Ácido Transaminase/genética , Plantas Geneticamente Modificadas/fisiologia , Estresse Fisiológico/genética , Triticum/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Plantas Geneticamente Modificadas/genética , Prolina/genética , Prolina/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico/fisiologia , Triticum/genética
10.
Food Chem ; 335: 127663, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32738540

RESUMO

Dissecting the functions of high molecular weight glutenin subunits (HMW-GSs) is helpful for improving wheat quality via breeding. In this study, we used a wheat mutant AS273 in which HMW-GS 1Dy12 was silenced to investigate the silencing mechanism of 1Dy12 and its effects on gluten accumulation and flour-processing quality. Results suggested that the expression of 1Dy12 in AS273 was decreased by one fifth during grain development; a stop codon produced by a base mutation (C/T) led to truncated translation; the absence of 1Dy12 stimulated the accumulation of low molecular weight glutenin subunits (LMW-GSs), gliadins, and glutenin macropolymers, and was resulted in larger protein bodies; AS273 had an inferior flour-processing performance. Based on the outputs achieved in this study it is concluded that 1Dy12 makes important contributions to bread, sponge cake and biscuit-processing quality.


Assuntos
Pão , Glutens/genética , Glutens/metabolismo , Triticum/genética , Triticum/metabolismo , Pão/análise , Códon de Terminação , Eletroforese em Gel de Poliacrilamida , Farinha , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Gliadina/metabolismo , Peso Molecular , Mutação , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Triticum/crescimento & desenvolvimento
12.
J Genet Genomics ; 47(9): 563-575, 2020 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-33187879

RESUMO

The TaQ alleles as one of the AP2-like transcription factors in common wheat (Triticum aestivum) play an important role in the evolution of spike characteristics from wild and domesticated emmer to modern wheat cultivars. Its loss-of-function mutant not only changed threshability and spike architecture but also affected plant height, flowering time, and floret structure. However, the comprehensive functions of TaAQ and TaDq genes in wheat have not been fully elucidated yet. Here, CRISPR/SpCas9 was used to edit wheat TaAQ and TaDq. We obtained homozygous plants in the T1 generation with loss of function of only TaAQ or TaDq and simultaneous loss of function of TaAQ and TaDq to analyze the effect of these genes on wheat spikes and floret shapes. The results demonstrated that the TaAQ-edited plants and the TaAQ and TaDq simultaneously-edited plants were nearly similar in spike architecture, whereas the TaDq-edited plants were different from the wild-type ones only in plant height. Moreover, the TaAQ-edited plants or the TaAQ and TaDq simultaneously-edited plants were more brittle than the wild-type and the TaDq-edited plants. Based on the expression profiling, we postulated that the VRN1, FUL2, SEP2, SEP5, and SEP6 genes might affect the number of spikelets and florets per spike in wheat by regulating the expression of TaQ. Combining the results of this report and previous reports, we conceived a regulatory network of wheat traits, including plant height, spike shape, and floral organs, which were influenced by AP2-like family genes. The results achieved in this study will help us to understand the regulating mechanisms of TaAQ and TaDq alleles on wheat floral organs and inflorescence development.


Assuntos
Grão Comestível/genética , Morfogênese/genética , Proteínas de Plantas/genética , Triticum/genética , Alelos , Sistemas CRISPR-Cas/genética , Domesticação , Grão Comestível/crescimento & desenvolvimento , Edição de Genes , Regulação da Expressão Gênica de Plantas/genética , Triticum/crescimento & desenvolvimento
13.
Theor Appl Genet ; 133(11): 3067-3083, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32685983

RESUMO

KEY MESSAGE: Three genes designated DvLox, Pm21#4, and Pm21#4-H identified in a wheat-Dasypyrum villosum#4 T6V#4S·6DL translocation line Pm97033 conferred wheat for powdery mildew resistance. Powdery mildew (PM) caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most devastating diseases in wheat. To date, only a few genes conferring resistance to wheat PM are cloned. Dasypyrum villosum is a wild relative of wheat, which provides Pm21 conferring wheat immunity to PM. In this study, we obtained many differentially expressed genes (DEGs) from a wheat-D. villosum#4 T6V#4S·6DL translocation line Pm97033 using RNA-sequencing. Among them, 7 DEGs associated with pathogen resistance were up-regulated in front of Bgt infection. Virus-induced gene silencing and transformation assays demonstrated that two of them, DvLox and Pm21#4 encoding a lipoxygenase and a encoding coiled-coil/nucleotide-binding site/leucine-rich repeat resistance protein, conferred wheat PM resistance. The transgenic wheat plants expressing DvLox enhanced PM resistance, and the transgenic wheat plants expressing Pm21#4 showed PM immunity. The Pm21#4-silenced Pm97033 plants by the cluster regularly interspaced short palindromic repeats-associated endonuclease (CRISPR/Cas9) system were susceptible to PM. Thus, Pm21#4 is a key gene contributing PM immune resistance in Pm97033. Constitutively expression of Pm21#4-H, which is silenced in Pm97033 and D. villosum#4, endowed a PM-susceptible wheat variety Fielder with PM immune resistance.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Poaceae/genética , Sistemas CRISPR-Cas , Proteínas de Repetições Ricas em Leucina , Lipoxigenase/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal , Plantas Geneticamente Modificadas/microbiologia , Proteínas/genética , Transcriptoma , Translocação Genética , Triticum/genética
14.
J Exp Bot ; 71(4): 1337-1349, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31760434

RESUMO

The use of CRISPR/LbCpf1 and CRISPR/xCas9 systems in wheat have not yet been reported. In this study, we compared the efficiencies of three CRISPR editing systems (SpCas9, LbCpf1, and xCas9), and three different promoters (OsU6a, TaU3, and TaU6) that drive single-guide (sg)RNA, which were introduced into wheat via Agrobacterium-mediated transformation. The results indicated that TaU3 was a better choice than OsU6a or TaU6. The editing efficiency was higher using two sgRNAs than one sgRNA, and mutants with a large fragment deletion between the two sgRNAs were produced. The LbCpf1 and xCas9 systems could both be used successfully. Two endogenous genes, TaWaxy and TaMTL, were edited with high efficiency by the optimized SpCas9 system, with the highest efficiency (80.5%) being achieved when using TaU3 and two sgRNAs to target TaWaxy. Rates of seed set in the TaMTL-edited T0 transgenic plants were much lower than that of the wild-type. A haploid induction rate of 18.9% was found in the TaMTL-edited T1 plants using the CRISPR/SpCas9 system. Mutants with reverse insertion of the deleted sequences of TaMTL and TaWaxy between the two sgRNAs were identified in the edited T0 plants. In addition, wheat grains lacking embryos or endosperms were observed in the TaMTL-edited T1 generation.


Assuntos
Agrobacterium , Edição de Genes , Agrobacterium/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Haploidia , Triticum/genética
15.
Int J Mol Sci ; 20(22)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752300

RESUMO

Maize ZmC1 and ZmR transcription factors belong to the MYB-type and bHLH families, respectively, and control anthocyanin biosynthesis. In this study, Agrobacterium-mediated transformation was used to generate transgenic wheat plants that overexpress ZmC1 and ZmR or both, with the objective of developing anthocyanin-enriched wheat germplasm. Three kinds of stable transgenic wheat lines were obtained. The integration of target genes in the transgenic wheat plants was confirmed by fluorescence in situ hybridization (FISH) analysis. We found that single overexpression of ZmC1 regulates pigmentation in the vegetative tissues such as coleoptiles, auricles, and stems. The single overexpression of ZmR controls the coloration in reproductive tissue like spikelets and seeds. The simultaneous overexpression of ZmC1 and ZmR showed the strongest pigmentation in almost all tissues. Furthermore, quantitative real-time PCR (qRT-PCR) analysis revealed that expression of the two transgenes, and of two conserved homologous and six associated structural genes involved in anthocyanin biosynthesis in wheat were greatly up-regulated in the transgenic plants. Similarly, quantitative analysis for anthocyanin amounts based on HPLC-MS also confirmed that the transgenic wheat plants with combined overexpression of ZmC1 and ZmR accumulated the highest quantity of pigment products. Moreover, developing seeds overexpressing ZmR exposed to light conditions showed up-regulated transcript levels of anthocyanin biosynthesis-related genes compared to dark exposure, which suggests an important role of light in regulating anthocyanin biosynthesis. This study provides a foundation for breeding wheat materials with high anthocyanin accumulation and understanding the mechanism of anthocyanin biosynthesis in wheat.


Assuntos
Antocianinas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Triticum/genética , Zea mays/genética , Cotilédone/genética , Regulação da Expressão Gênica de Plantas/genética , Pigmentação/genética , Plantas Geneticamente Modificadas/genética , Sementes/genética
16.
BMC Genomics ; 20(1): 289, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30987602

RESUMO

BACKGROUND: Dasypyrum villosum is an important wild species of wheat (Triticum aestivum L.) and harbors many desirable genes that can be used to improve various traits of wheat. Compared with other D. villosum accessions, D. villosum#4 still remains less studied. In particular, chromosomes of D. villosum#4 except 6V#4 have not been introduced into wheat by addition or substitution and translocation, which is an essential step to identify and apply the alien desired genes. RNA-seq technology can generate large amounts of transcriptome sequences and accelerate the development of chromosome-specific molecular markers and assisted selection of alien chromosome line. RESULTS: We obtained the transcriptome of D. villosum#4 via a high-throughput sequencing technique, and then developed 76 markers specific to each chromosome arm of D. villosum#4 based on the bioinformatic analysis of the transcriptome data. The D. villosum#4 sequences containing the specific DNA markers were expected to be involved in different genes, among which most had functions in metabolic processes. Consequently, we mapped these newly developed molecular markers to the homologous chromosome of barley and obtained the chromosome localization of these markers on barley genome. Then we analyzed the collinearity of these markers among D. villosum, wheat, and barley. In succession, we identified six types of T. aestivum-D. villosum#4 alien chromosome lines which had one or more than one D. villosum#4 chromosome in the cross and backcross BC3F5 populations between T. durum-D. villosum#4 amphidiploid TH3 and wheat cv. Wan7107 by employing the selected specific markers, some of which were further confirmed to be translocation or addition lines by genomic in situ hybridization (GISH). CONCLUSION: Seventy-six PCR markers specific to chromosomes of D. villosum#4 based on transcriptome data were developed in the current study and their collinearity among D. villosum, wheat, and barley were carried out. Six types of Triticum aestivum-D. villosum#4 alien chromosome lines were identified by using 12 developed markers and some of which were further confirmed by GISH. These novel T. aestivum-D. villosum#4 chromosome lines have great potential to be used for the introduction of desirable genes from D. villosum#4 into wheat by chromosomal translocation to breed new wheat varieties.


Assuntos
Cruzamento , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica , Marcadores Genéticos/genética , Genômica , Poaceae/genética , Triticum/genética , Genoma de Planta/genética , Anotação de Sequência Molecular , Reação em Cadeia da Polimerase
17.
Theor Appl Genet ; 131(1): 13-25, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28887628

RESUMO

KEY MESSAGE: Transcriptome data were used to develop 134 Aegilops longissima specific PCR markers and their comparative maps were constructed by contrasting with the homologous genes in the wheat B genome. Three wheat- Ae. longissima 1BL·1S l S translocation lines were identified using the correspondence markers. Aegilops longissima is an important wild species of common wheat that harbors many genes that can be used to improve various traits of common wheat (Triticum aestivum L.). To efficiently transfer the traits conferred by these Ae. longissima genes into wheat, we sequenced the whole expression transcript of Ae. longissima. Using the transcriptome data, we developed 134 specific polymerase chain reaction markers located on the 14 chromosome arms of Ae. longissima. These novel molecular markers were assigned to specific chromosome locations based on a comparison with the homologous genes in the B genome of wheat. Annotation of these genes showed that most had functions related to metabolic processes, hydrolase activity, or catalytic activity. Additionally, we used these markers to identify three wheat-Ae. longissima 1BL·1SlS translocation lines in somatic variation populations resulting from a cross between wheat cultivar Westonia and a wheat-Ae. longissima substitution line 1Sl(1B). The translocation lines had several low molecular weight glutenin subunits encoding genes beneficial to flour processing quality that came from Ae. longissima 1SlS. The three translocation lines were also confirmed by genomic in situ hybridization. These translocation lines will be further evaluated for potential quality improvement of bread-making properties of wheat.


Assuntos
Marcadores Genéticos , Melhoramento Vegetal , Poaceae/genética , Translocação Genética , Cromossomos de Plantas , Glutens , Reação em Cadeia da Polimerase , Transcriptoma , Triticum
18.
Sci Rep ; 7(1): 6641, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747704

RESUMO

Arginase (ARG) contributes to nitrogen remobilization by conversion of arginine to ornithine and urea. However, wheat ARG genes have not yet been identified. Here we isolated and characterized ARG genes from wheat and its progenitor species and found that a single copy was present in wheat progenitors. Three common wheat ARG genes of TaARG-2AS, TaARG-2BS, and TaARG-2DS were experimentally assigned to the short arms of the group 2 chromosomes. We found an in-frame stop codon in TaARG-2AS, but not in the other two genes. The highest expression was detected in stems and sheaths for TaARG-2BS and in leaves for TaARG-2DS. Both genes have similar expression trend in different developmental stages, peaking at booting and grain filling stages. TaARG-2BS transcript was induced by high salinity and drought, whereas TaARG-2DS was induced by drought only, but neither of them were induced by low temperature. In addition, both genes showed analogous expression pattern upon powdery mildew (PM) infection in the resistant line Pm97033, with TaARG-2BS induced greatly at 72 h post PM infection. In contrast, no obvious transcripts were accumulated for TaARG-2DS in the PM susceptible line Wan7107. Monocot ARGs have more conserved mitochondrion-targeting signals and are more evolutionarily conserved than dicot ARGs.


Assuntos
Arginase/genética , Proteínas de Plantas/genética , Triticum/enzimologia , Arginase/análise , Mapeamento Cromossômico , Códon sem Sentido , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Desenvolvimento Vegetal , Doenças das Plantas , Folhas de Planta/enzimologia , Caules de Planta/enzimologia , Triticum/genética , Triticum/crescimento & desenvolvimento
19.
Theor Appl Genet ; 130(10): 2057-2068, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28653149

RESUMO

KEY MESSAGE: Twenty-five Dasypyrum villosum 6V#4S-specific PCR markers were developed using transcriptome data and further assigned to comparative genomic maps of wheat chromosome 6A, 6B, and 6D and barley chromosome 6H contrasting their homologous genes in these genomes. Two Dasypyrum villosum accessions, D.v#2 and No. 1026 from England and Russia, respectively, contain Pm21 on chromosome 6V#2S and PmV on chromosome 6V#4S. Both genes confer high resistance to powdery mildew (PM) in wheat. Even though several molecular markers have been developed to detect Pm21 and PmV, only the MBH1 marker can simultaneously detect both Pm21 and PmV. In this study, we first used a high-throughput sequencing technique to obtain the transcriptome sequences of a wheat-D. villosum translocation line, Pm97033-which contains chromosome 6V#4S carrying the PmV locus, under wheat PM pathogen induction. Twenty-five 6V#4S chromosome-specific markers were developed. Three of them were able to clearly distinguish chromosomes 6V#4S and 6V#2S by product size, four amplified the product specific for chromosome 6V#4S only, and the remaining 18 markers identified chromosome 6VS in wheat backgrounds. Two different D. villosum accessions, their derived translocation lines and wheat varieties carrying different chromosome 6VS were identified using these specific markers. The 25 newly developed markers together with the known PM resistance gene Stpk-V were used to construct comparative genomic maps with the homoeologous chromosome arms of wheat and barley. The colinearity of the identified gene sequences amplified by the 25 markers among wheat chromosomes 6A, 6B, and 6D and barley chromosome 6H was not very conserved and interrupted frequently by inversion and insertion. Our markers have potential in marker assisted selection for PM resistance breeding, and for locating other potential important genes and cloning the PmV gene on chromosome 6V#4S.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Marcadores Genéticos , Poaceae/genética , Transcriptoma , Hibridização Genômica Comparativa , Hordeum/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Translocação Genética , Triticum/genética
20.
Plant Biotechnol J ; 15(5): 614-623, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27862820

RESUMO

Genotype specificity is a big problem lagging the development of efficient hexaploid wheat transformation system. Increasingly, the biosecurity of genetically modified organisms is garnering public attention, so the generation of marker-free transgenic plants is very important to the eventual potential commercial release of transgenic wheat. In this study, 15 commercial Chinese hexaploid wheat varieties were successfully transformed via an Agrobacterium-mediated method, with efficiency of up to 37.7%, as confirmed by the use of Quickstix strips, histochemical staining, PCR analysis and Southern blotting. Of particular interest, marker-free transgenic wheat plants from various commercial Chinese varieties and their F1 hybrids were successfully obtained for the first time, with a frequency of 4.3%, using a plasmid harbouring two independent T-DNA regions. The average co-integration frequency of the gus and the bar genes located on the two independent T-DNA regions was 49.0% in T0 plants. We further found that the efficiency of generating marker-free plants was related to the number of bar gene copies integrated in the genome. Marker-free transgenic wheat plants were identified in the progeny of three transgenic lines that had only one or two bar gene copies. Moreover, silencing of the bar gene was detected in 30.7% of T1 positive plants, but the gus gene was never found to be silenced in T1 plants. Bisulphite genomic sequencing suggested that DNA methylation in the 35S promoter of the bar gene regulatory region might be the main reason for bar gene silencing in the transgenic plants.


Assuntos
Agrobacterium/genética , Marcadores Genéticos , Plantas Geneticamente Modificadas , Triticum/genética , China , Cruzamentos Genéticos , Metilação de DNA , Inativação Gênica , Poliploidia , Regiões Promotoras Genéticas , Transformação Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...