Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 112(6): 1715-1723, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36682487

RESUMO

P-glycoprotein (P-gp) may limit oral drug absorption of substrate drugs due to intestinal efflux. Therefore, regulatory agencies require investigation of new chemical entities as possible inhibitors of P-gp in vitro. Unfortunately, inter-laboratory and inter-assay variability have hindered the translatability of in vitro P-gp inhibition data to predict clinical drug interaction risk. The current study was designed to evaluate the impact of potential IC50 discrepancies between two commonly utilized assays, i.e., bi-directional Madin-Darby Canine Kidney-MDR1 cell-based and MDR1 membrane vesicle-based assays. When comparing vesicle- to cell-based IC50 values (n = 28 inhibitors), non-P-gp substrates presented good correlation between assay formats, whereas IC50s of P-gp substrates were similar or lower in the vesicle assays. The IC50s obtained with a cell line expressing relatively low P-gp aligned more closely to those obtained from the vesicle assay, but passive permeability of the inhibitors did not appear to influence the correlation of IC50s, suggesting that efflux activity reduces intracellular inhibitor concentrations. IC50s obtained between two independent laboratories using the same assay type showed good correlation. Using the G-value (i.e., ratio of estimated gut concentration-to-inhibition potency) >10 cutoff recommended by regulatory agencies resulted in minimal differences in predictive performance, suggesting this cutoff is appropriate for either assay format.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Animais , Cães , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Interações Medicamentosas , Transporte Biológico , Linhagem Celular
2.
CPT Pharmacometrics Syst Pharmacol ; 8(9): 634-642, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31420942

RESUMO

Physiologically-based pharmacokinetic (PBPK) modeling is a powerful tool to quantitatively describe drug disposition profiles in vivo, thereby providing an alternative to predict drug-drug interactions (DDIs) that have not been tested clinically. This study aimed to predict effects of rifampin-mediated intestinal P-glycoprotein (Pgp) induction on pharmacokinetics of Pgp substrates via PBPK modeling. First, we selected four Pgp substrates (digoxin, talinolol, quinidine, and dabigatran etexilate) to derive in vitro to in vivo scaling factors for intestinal Pgp kinetics. Assuming unbound Michaelis-Menten constant (Km ) to be intrinsic, we focused on the scaling factors for maximal efflux rate (Jmax ) to adequately recover clinically observed results. Next, we predicted rifampin-mediated fold increases in intestinal Pgp abundances to reasonably recover clinically observed DDI results. The modeling results suggested that threefold to fourfold increases in intestinal Pgp abundances could sufficiently reproduce the DDI results of these Pgp substrates with rifampin. Hence, the obtained fold increases can potentially be applicable to DDI prediction with other Pgp substrates.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Mucosa Intestinal/metabolismo , Rifampina/farmacocinética , Administração Oral , Dabigatrana/farmacologia , Digoxina/administração & dosagem , Digoxina/farmacologia , Interações Medicamentosas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Masculino , Modelos Biológicos , Propanolaminas/administração & dosagem , Propanolaminas/farmacologia , Quinidina/administração & dosagem , Quinidina/farmacologia , Rifampina/administração & dosagem
3.
J Pharmacol Exp Ther ; 370(1): 72-83, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30975793

RESUMO

Hepatic uptake transporters [solute carriers (SLCs)], including organic anion transporting polypeptide (OATP) 1B1, OATP1B3, OATP2B1, sodium-dependent taurocholate cotransporting polypeptide (NTCP), and organic anion (OAT2) and organic cation (OCT1) transporters, play a key role in determining the systemic and liver exposure of chemically diverse drugs. Here, we established a phenotyping approach to quantify the contribution of the six SLCs, and passive diffusion, to the overall uptake using plated human hepatocytes (PHHs). First, selective inhibitor conditions were identified by screening about 20 inhibitors across the six SLCs using single-transfected human embryonic kidney 293 cells. Data implied rifamycin SV (20 µM) inhibits three OATPs, while rifampicin (5 µM) inhibits OATP1B1/1B3 only. Further, hepatitis B virus myristoylated-preS1 peptide (0.1 µM), quinidine (100 µM), and ketoprofen (100-300 µM) are relatively selective against NTCP, OCT1, and OAT2, respectively. Second, using these inhibitory conditions, the fraction transported (ft ) by the individual SLCs was characterized for 20 substrates with PHH. Generally, extended clearance classification system class 1A/3A (e.g., warfarin) and 1B/3B compounds (e.g., statins) showed predominant OAT2 and OATP1B1/1B3 contribution, respectively. OCT1-mediated uptake was prominent for class 2/4 compounds (e.g., metformin). Third, in vitro ft values were corrected using quantitative proteomics data to obtain "scaled ft " Fourth, in vitro-in vivo extrapolation of the scaled OATP1B1/1B3 ft was assessed, leveraging statin clinical drug-drug interaction data with rifampicin as the perpetrator. Finally, we outlined a novel stepwise strategy to implement phenotypic characterization of SLC-mediated hepatic uptake for new molecular entities and drugs in a drug discovery and development setting.


Assuntos
Hepatócitos/metabolismo , Fígado/citologia , Fígado/metabolismo , Preparações Farmacêuticas/metabolismo , Fenótipo , Proteínas Carreadoras de Solutos/metabolismo , Transporte Biológico/efeitos dos fármacos , Interações Medicamentosas , Células HEK293 , Hepatócitos/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fígado/efeitos dos fármacos , Rifampina/metabolismo , Rifampina/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-30809512

RESUMO

Systemic Candida infections remain a leading cause of nosocomial infections in the United States and worldwide. Many challenges remain in achieving rapid, direct diagnosis of fungal bloodstream infections due to limitations of conventional diagnostic methods that continue to demonstrate poor sensitivity, prolonged culture times that lead to delayed treatment, and detection variability between tests that compromises result reproducibility. Despite advancements in technology, mortality, and cost of care presented by blood stream infection with Candida spp. (candidemia) continues to rise and there is an urgent need for the development of novel methods to accurately detect Candida species present within the blood. This is especially true when patients are infected with drug resistant strains of Candida where accurate and immediate therapeutic treatment is of the importance. This study presents a method of separating fungal cells from lysed blood using inertial forces applied through microfluidics in order to abbreviate the time required to achieve a diagnosis by mitigating the need to grow blood cultures. We found that C. albicans can segregate into a focused stream distinct from white blood cells isolated within the Inertial Fungal Focuser (IFF) after red blood cell lysis. As a result of the focusing process, the collected cells are also concentrated 2.86 times. The same IFF device is applicable to non-albicans species: Candida parapsilosis, Candida glabrata, and Candida tropicalis, providing both isolation from lysed blood and a reduction in solution volume. Thus, the devised platform provides a means to isolate medically significant fungal cells from blood and concentrate the cells for further interrogation.


Assuntos
Sangue/microbiologia , Candida/isolamento & purificação , Candidíase Invasiva/diagnóstico , Dispositivos Lab-On-A-Chip , Técnicas Microbiológicas/métodos , Microfluídica/métodos , Humanos , Técnicas Microbiológicas/instrumentação , Microfluídica/instrumentação , Fatores de Tempo
5.
Future Med Chem ; 8(2): 117-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26808006

RESUMO

BACKGROUND: We identified auranofin as an antimicrobial compound utilizing a high-throughput screen using a Caenorhabditis elegans-Staphylococcus aureus infection model. Results/methodology: Treatment of infected nematodes with auranofin resulted in a prolonged survival rate of 95%, reached with 0.78 µg/ml. Further investigation of the antimicrobial activity of auranofin found inhibition against S. aureus, Enterococcus faecium and Enterococcus faecalis. Importantly, the fungal pathogens Cryptococcus neoformans was also effectively inhibited with an MIC at 0.5 µg/ml. Auranofin appears to target the thioredoxin system. CONCLUSION: This work provides extensive additional data on the antibacterial effects of auranofin that includes both reference and clinical isolates and reports a novel inhibition of fungal pathogens by this compound.


Assuntos
Antibacterianos/farmacologia , Auranofina/farmacologia , Animais , Antibacterianos/química , Auranofina/química , Bactérias/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Cryptococcus/efeitos dos fármacos , Enterococcus/efeitos dos fármacos , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...