Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Integr Neurosci ; 18: 1321872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440417

RESUMO

Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.

2.
J Funct Biomater ; 15(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535270

RESUMO

Gelatin methacrylate (GelMA) is a photocrosslinkable biomaterial that has gained widespread use in tissue engineering due to its favorable biological attributes and customizable physical and mechanical traits. While GelMA is compatible with various cell types, distinct cellular responses are observed within GelMA hydrogels. As such, tailoring hydrogels for specific applications has become imperative. Thus, our objective was to develop GelMA hydrogels tailored to enhance cell viability specifically for TC28a2 chondrocytes in a three-dimensional (3D) cell culture setting. We investigated GelMA synthesis using PBS and 0.25M CB buffer, analyzed the mechanical and physical traits of GelMA hydrogels, and evaluated how varying GelMA crosslinking conditions (GelMA concentration, photoinitiator concentration, and UV exposure time) affected the viability of TC28a2 chondrocytes. The results revealed that GelMA synthesis using 0.25M CB buffer led to a greater degree of methacrylation compared to PBS buffer, and the LAP photoinitiator demonstrated superior efficacy for GelMA gelation compared to Irgacure 2959. Additionally, the stiffness, porosity, and swelling degree of GelMA hydrogels were predominantly affected by GelMA concentration, while cell viability was impacted by all crosslinking conditions, decreasing notably with increasing GelMA concentration, photoinitiator concentration, and UV exposure time. This study facilitated the optimization of crosslinking conditions to enhance cell viability within GelMA hydrogels, a critical aspect for diverse biomedical applications.

3.
Heliyon ; 10(1): e23953, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38234902

RESUMO

The presented research highlights a novel approach using fmoc-protected peptide hydrogels for the encapsulation and stretching of mesenchymal stem cells (MSCs). This study utilized a custom mechanical stretching device with a PDMS chamber to stretch human MSCs encapsulated in Fmoc hydrogels. The study assessed the influence of various solvents on the self-assembly and mechanical properties of the hydrogels, and MSC viability and alignment. Particularly we focused on fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) prepared in dimethyl sulfoxide (DMSO), hexafluoro-2-propanol (HFP), and deionized water (DiH2O). Through molecular self-assembly of the peptide sequence into ß-sheets connected by π-π aromatic stacking of F-F groups, the peptide hydrogel was found to form a stiff, hydrated gel with nanofiber morphology and a compressive modulus ranging from 174 to 277 Pa. Therefore, this hydrogel can mimic certain critical features of the extracellular matrix and collagen. Evaluations of MSCs cultured on the peptide hydrogels, including viability, morphology, and alignment assessments using various staining techniques, demonstrated that 3D-cultured MSCs in Fmoc-FF/HFP and Fmoc-FF/DMSO, followed by mechanical stretching, exhibited elongated morphology with distinct microfilament fibers compared to the control cells, which maintained a round and spherical F-actin shape. Notably, peptide gels with a concentration of 5 mM maintained 100 % MSC viability. The findings indicate the potential and specific conditions for successful cell encapsulation and alignment within peptide hydrogels, highlighting a promising tissue engineering platform through the encapsulation of MSCs in peptide nanofibers followed by a stretching process. By enhancing our understanding of MSC-peptide hydrogel interactions, this research contributes to the development of biomaterials tailored for regenerative medicine.

4.
Polymers (Basel) ; 15(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959906

RESUMO

Thiol-ene polymers are a promising class of biomaterials with a wide range of potential applications, including organs-on-a-chip, microfluidics, drug delivery, and wound healing. These polymers offer flexibility, softening, and shape memory properties. However, they often lack the inherent stretchability required for wearable or implantable devices. This study investigated the incorporation of di-acrylate chain extenders to improve the stretchability and conformability of those flexible thiol-ene polymers. Thiol-ene/acrylate polymers were synthesized using 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATATO), Trimethylolpropanetris (3-mercaptopropionate) (TMTMP), and Polyethylene Glycol Diacrylate (PEGDA) with different molecular weights (Mn 250 and Mn 575). Fourier Transform Infrared (FTIR) spectroscopy confirmed the complete reaction among the monomers. Uniaxial tensile testing demonstrated the softening and stretching capability of the polymers. The Young's Modulus dropped from 1.12 GPa to 260 MPa upon adding 5 wt% PEGDA 575, indicating that the polymer softened. The Young's Modulus was further reduced to 15 MPa under physiologic conditions. The fracture strain, a measure of stretchability, increased from 55% to 92% with the addition of 5 wt% PEGDA 575. A thermomechanical analysis further confirmed that PEGDA could be used to tune the polymer's glass transition temperature (Tg). Moreover, our polymer exhibited shape memory properties. Our results suggested that thiol-ene/acrylate polymers are a promising new class of materials for biomedical applications requiring flexibility, stretchability, and shape memory properties.

5.
Materials (Basel) ; 15(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35268893

RESUMO

Medical science technology has improved tremendously over the decades with the invention of robotic surgery, gene editing, immune therapy, etc. However, scientists are now recognizing the significance of 'biological circuits' i.e., bodily innate electrical systems for the healthy functioning of the body or for any disease conditions. Therefore, the current trend in the medical field is to understand the role of these biological circuits and exploit their advantages for therapeutic purposes. Bioelectronics, devised with these aims, work by resetting, stimulating, or blocking the electrical pathways. Bioelectronics are also used to monitor the biological cues to assess the homeostasis of the body. In a way, they bridge the gap between drug-based interventions and medical devices. With this in mind, scientists are now working towards developing flexible and stretchable miniaturized bioelectronics that can easily conform to the tissue topology, are non-toxic, elicit no immune reaction, and address the issues that drugs are unable to solve. Since the bioelectronic devices that come in contact with the body or body organs need to establish an unobstructed interface with the respective site, it is crucial that those bioelectronics are not only flexible but also stretchable for constant monitoring of the biological signals. Understanding the challenges of fabricating soft stretchable devices, we review several flexible and stretchable materials used as substrate, stretchable electrical conduits and encapsulation, design modifications for stretchability, fabrication techniques, methods of signal transmission and monitoring, and the power sources for these stretchable bioelectronics. Ultimately, these bioelectronic devices can be used for wide range of applications from skin bioelectronics and biosensing devices, to neural implants for diagnostic or therapeutic purposes.

6.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572320

RESUMO

Osteoarthritis (OA) is a common degenerative disease characterized by the destruction of articular cartilage and chronic inflammation of surrounding tissues. Matrix metalloproteinase-13 (MMP-13) is the primary MMP involved in cartilage degradation through its particular ability to cleave type II collagen. Hence, it is an attractive target for the treatment of OA. However, the detailed molecular mechanisms of OA initiation and progression remain elusive, and, currently, there are no interventions available to restore degraded cartilage. This review fully illustrates the involvement of MMP-13 in the initiation and progression of OA through the regulation of MMP-13 activity at the molecular and epigenetic levels, as well as the strategies that have been employed against MMP-13. The aim of this review is to identify MMP-13 as an attractive target for inhibitor development in the treatment of OA.


Assuntos
Cartilagem Articular/patologia , Metaloproteinase 13 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Osteoartrite/tratamento farmacológico , Cartilagem Articular/efeitos dos fármacos , Domínio Catalítico , Colágeno Tipo II/metabolismo , Cristalografia por Raios X , Progressão da Doença , Desenvolvimento de Medicamentos , Epigênese Genética/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/ultraestrutura , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Terapia de Alvo Molecular/métodos , Osteoartrite/genética , Osteoartrite/patologia
7.
J Clin Med ; 9(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339209

RESUMO

Although surgeries involving anastomosis are relatively common, anastomotic leakages are potentially deadly complications of colorectal surgeries due to increased risk of morbidity and mortality. As a result of the potentially fatal effects of anastomotic leakages, a myriad of techniques and treatments have been developed to treat these unfortunate cases. In order to better understand the steps taken to treat this complication, we have created a composite review involving some of the current and best treatments for colonic anastomotic leakage that are available. The aim of this article is to present a background review of colonic anastomotic leakage, as well as current strategies to prevent and treat this condition, for a broader audience, including scientist, engineers, and especially biomedical engineers.

8.
MRS Bull ; 45(8): 655-668, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34690420

RESUMO

Implantable neural interfaces are important tools to accelerate neuroscience research and translate clinical neurotechnologies. The promise of a bidirectional communication link between the nervous system of humans and computers is compelling, yet important materials challenges must be first addressed to improve the reliability of implantable neural interfaces. This perspective highlights recent progress and challenges related to arguably two of the most common failure modes for implantable neural interfaces: (1) compromised barrier layers and packaging leading to failure of electronic components; (2) encapsulation and rejection of the implant due to injurious tissue-biomaterials interactions, which erode the quality and bandwidth of signals across the biology-technology interface. Innovative materials and device design concepts could address these failure modes to improve device performance and broaden the translational prospects of neural interfaces. A brief overview of contemporary neural interfaces is presented and followed by recent progress in chemistry, materials, and fabrication techniques to improve in vivo reliability, including novel barrier materials and harmonizing the various incongruences of the tissue-device interface. Challenges and opportunities related to the clinical translation of neural interfaces are also discussed.

9.
Polymers (Basel) ; 11(5)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108911

RESUMO

Thiol-ene/acrylate-based shape memory polymers (SMPs) with tunable mechanical and thermomechanical properties are promising substrate materials for flexible electronics applications. These UV-curable polymer compositions can easily be polymerized onto pre-fabricated electronic components and can be molded into desired geometries to provide a shape-changing behavior or a tunable softness. Alternatively, SMPs may be prepared as a flat substrate, and electronic circuitry may be built directly on top by thin film processing technologies. Whichever way the final structure is produced, the operation of electronic circuits will be influenced by the electrical and mechanical properties of the underlying (and sometimes also encapsulating) SMP substrate. Here, we present electronic properties, such as permittivity and resistivity of a typical SMP composition that has a low glass transition temperature (between 40 and 60 °C dependent on the curing process) in different thermomechanical states of polymer. We fabricated parallel plate capacitors from a previously reported SMP composition (fully softening (FS)-SMP) using two different curing processes, and then we determined the electrical properties of relative permittivity and resistivity below and above the glass transition temperature. Our data shows that the curing process influenced the electrical permittivity, but not the electrical resistivity. Corona-Kelvin metrology evaluated the quality of the surface of FS-SMP spun on the wafer. Overall, FS-SMP demonstrates resistivity appropriate for use as an insulating material.

10.
J Vis Exp ; (145)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30882794

RESUMO

When using dynamically softening substrates for neural implants, it is important to have a reliable in vitro method to characterize the softening behavior of these materials. In the past, it has not been possible to satisfactorily measure the softening of thin films under conditions mimicking body environment without substantial effort. This publication presents a new and simple method that allows dynamic mechanical analysis (DMA) of polymers in solutions, such as phosphate buffered saline (PBS), at relevant temperatures. The use of environmental DMA allows measurement of the softening effects of polymers due to plasticization in various media and temperatures, which therefore allows a prediction of the materials behavior under in vivo conditions.


Assuntos
Fenômenos Mecânicos , Próteses Neurais , Próteses e Implantes , Cinética , Polímeros/química , Temperatura
11.
Sci Rep ; 8(1): 16390, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401906

RESUMO

Silicone nerve cuff electrodes are commonly implanted on relatively large and accessible somatic nerves as peripheral neural interfaces. While these cuff electrodes are soft (1-50 MPa), their self-closing mechanism requires of thick walls (200-600 µm), which in turn contribute to fibrotic tissue growth around and inside the device, compromising the neural interface. We report the use of thiol-ene/acrylate shape memory polymer (SMP) for the fabrication of thin film multi-electrode softening cuffs (MSC). We fabricated multi-size MSC with eight titanium nitride (TiN) electrodes ranging from 1.35 to 13.95 × 10-4 cm2 (1-3 kΩ) and eight smaller gold (Au) electrodes (3.3 × 10-5 cm2; 750 kΩ), that soften at physiological conditions to a modulus of 550 MPa. While the SMP material is not as soft as silicone, the flexural forces of the SMP cuff are about 70-700 times lower in the MSC devices due to the 30 µm thick film compared to the 600 µm thick walls of the silicone cuffs. We demonstrated the efficacy of the MSC to record neural signals from rat sciatic and pelvic nerves (1000 µm and 200 µm diameter, respectively), and the selective fascicular stimulation by current steering. When implanted side-by-side and histologically compared 30 days thereafter, the MSC devices showed significantly less inflammation, indicated by a 70-80% reduction in ED1 positive macrophages, and 54-56% less fibrotic vimentin immunoreactivity. Together, the data supports the use of MSC as compliant and adaptable technology for the interfacing of somatic and autonomic peripheral nerves.


Assuntos
Estimulação Elétrica/instrumentação , Eletrodos Implantados , Fenômenos Mecânicos , Nervo Isquiático/fisiologia , Animais , Eletroquímica , Desenho de Equipamento , Potenciais Evocados , Feminino , Fibrose , Ratos , Silicones/efeitos adversos
12.
Front Neurosci ; 12: 772, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429766

RESUMO

Intracortical microelectrodes record neuronal activity of individual neurons within the brain, which can be used to bridge communication between the biological system and computer hardware for both research and rehabilitation purposes. However, long-term consistent neural recordings are difficult to achieve, in large part due to the neuroinflammatory tissue response to the microelectrodes. Prior studies have identified many factors that may contribute to the neuroinflammatory response to intracortical microelectrodes. Unfortunately, each proposed mechanism for the prolonged neuroinflammatory response has been investigated independently, while it is clear that mechanisms can overlap and be difficult to isolate. Therefore, we aimed to determine whether the dual targeting of the innate immune response by inhibiting innate immunity pathways associated with cluster of differentiation 14 (CD14), and the mechanical mismatch could improve the neuroinflammatory response to intracortical microelectrodes. A thiol-ene probe that softens on contact with the physiological environment was used to reduce mechanical mismatch. The thiol-ene probe was both softer and larger in size than the uncoated silicon control probe. Cd14-/- mice were used to completely inhibit contribution of CD14 to the neuroinflammatory response. Contrary to the initial hypothesis, dual targeting worsened the neuroinflammatory response to intracortical probes. Therefore, probe material and CD14 deficiency were independently assessed for their effect on inflammation and neuronal density by implanting each microelectrode type in both wild-type control and Cd14-/- mice. Histology results show that 2 weeks after implantation, targeting CD14 results in higher neuronal density and decreased glial scar around the probe, whereas the thiol-ene probe results in more microglia/macrophage activation and greater blood-brain barrier (BBB) disruption around the probe. Chronic histology demonstrate no differences in the inflammatory response at 16 weeks. Over acute time points, results also suggest immunomodulatory approaches such as targeting CD14 can be utilized to decrease inflammation to intracortical microelectrodes. The results obtained in the current study highlight the importance of not only probe material, but probe size, in regard to neuroinflammation.

13.
Micromachines (Basel) ; 9(10)2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30424419

RESUMO

Thiol-ene based shape memory polymers (SMPs) have been developed for use as intracortical microelectrode substrates. The unique chemistry provides precise control over the mechanical and thermal glass-transition properties. As a result, SMP substrates are stiff at room temperature, allowing for insertion into the brain without buckling and subsequently soften in response to body temperatures, reducing the mechanical mismatch between device and tissue. Since the surface chemistry of the materials can contribute significantly to the ultimate biocompatibility, as a first step in the characterization of our SMPs, we sought to isolate the biological response to the implanted material surface without regards to the softening mechanics. To accomplish this, we tightly controlled for bulk stiffness by comparing bare silicon 'dummy' devices to thickness-matched silicon devices dip-coated with SMP. The neuroinflammatory response was evaluated after devices were implanted in the rat cortex for 2 or 16 weeks. We observed no differences in the markers tested at either time point, except that astrocytic scarring was significantly reduced for the dip-coated implants at 16 weeks. The surface properties of non-softening thiol-ene SMP substrates appeared to be equally-tolerated and just as suitable as silicon for neural implant substrates for applications such as intracortical microelectrodes, laying the groundwork for future softer devices to improve upon the prototype device performance presented here.

14.
Micromachines (Basel) ; 9(10)2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30424433

RESUMO

Current intracortical probe technology is limited in clinical implementation due to the short functional lifetime of implanted devices. Devices often fail several months to years post-implantation, likely due to the chronic immune response characterized by glial scarring and neuronal dieback. It has been demonstrated that this neuroinflammatory response is influenced by the mechanical mismatch between stiff devices and the soft brain tissue, spurring interest in the use of softer polymer materials for probe encapsulation. Here, we demonstrate stable recordings and electrochemical properties obtained from fully encapsulated shape memory polymer (SMP) intracortical electrodes implanted in the rat motor cortex for 13 weeks. SMPs are a class of material that exhibit modulus changes when exposed to specific conditions. The formulation used in these devices softens by an order of magnitude after implantation compared to its dry, room-temperature modulus of ~2 GPa.

15.
J Biomed Mater Res A ; 106(11): 2891-2898, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30371968

RESUMO

Shape memory polymers (SMPs) based on thiol-ene/acrylate formulations are an emerging class of materials with potential applications as structural and/or dielectric coatings for implantable neural interfaces. Here, we report in vitro compatibility studies of three novel thiol-ene/acrylate-based SMP formulations. In vivo cytotoxicity assays were carried out in accordance with International Organization for Standards (ISO) protocol 10993-5, using NCTC clone 929 fibroblasts as well as embryonic cortical cultures. All three SMP formulations passed standardized cytotoxicity assays (>70% normalized cell viability) using both cell types. Functional neurotoxicity assays were carried out using primary cortical networks cultured on substrate-integrated microelectrode arrays (MEAs). We observed significant reduction in cortical network activity in the case of positive control material, but no significant alterations in activity following incubation with SMP material extracts, indicating functional cytocompatibility. Finally, we assessed cell reactivity at the tissue-material interface by performing an in vitro glial scarring assay. Through immunostaining, we observed similar astrocyte-associated (GFAP) mean intensity ratios near nonsoftening SMP-coated and uncoated stainless steel microwires (1.10 ± 0.06 vs. 1.19 ± 0.10), suggesting similar glial cell reactivity. However, we observed decreased mean intensity ratios in the presence of fully softening SMP-coated microwires (1.02 ± 0.04) suggesting reduced glial cell reactivity. Overall, these results indicate that the thiol-ene/acrylate SMP formulations presented here are neither cytotoxic nor neurotoxic, and suggest that fully softening SMP may reduce foreign body response in terms of glial cell reactivity. These findings support further consideration of this class of materials as backbone or insulating materials for implantable neural stimulating/recording devices. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2891-2898, 2018.


Assuntos
Acrilatos/química , Materiais Biocompatíveis/química , Neurônios/citologia , Compostos de Sulfidrila/química , Acrilatos/toxicidade , Animais , Materiais Biocompatíveis/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Teste de Materiais , Camundongos , Microeletrodos , Próteses e Implantes , Compostos de Sulfidrila/toxicidade
16.
Sci Rep ; 8(1): 122, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317748

RESUMO

Mosquitos are among the deadliest insects on the planet due to their ability to transmit diseases like malaria through their bite. In order to bite, a mosquito must insert a set of micro-sized needles through the skin to reach vascular structures. The mosquito uses a combination of mechanisms including an insertion guide to enable it to bite and feed off of larger animals. Here, we report on a biomimetic strategy inspired by the mosquito insertion guide to enable the implantation of intracortical microelectrodes into the brain. Next generation microelectrode designs leveraging ultra-small dimensions and/or flexible materials offer the promise of increased performance, but present difficulties in reliable implantation. With the biomimetic guide in place, the rate of successful microprobe insertion increased from 37.5% to 100% due to the rise in the critical buckling force of the microprobes by 3.8-fold. The prototype guides presented here provide a reproducible method to augment the insertion of small, flexible devices into the brain. In the future, similar approaches may be considered and applied to the insertion of other difficult to implant medical devices.


Assuntos
Biomimética/métodos , Encéfalo , Culicidae , Eletrodos Implantados , Mordeduras e Picadas de Insetos , Microeletrodos , Algoritmos , Animais , Biomimética/instrumentação , Culicidae/fisiologia , Desenho de Equipamento , Fenômenos Mecânicos , Modelos Teóricos , Ratos
17.
ACS Omega ; 2(8): 4604-4611, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023725

RESUMO

Thiol-ene/acrylate shape-memory polymers can be used as base substrates for neural electrodes to treat neurological dysfunction. Neural electrodes are implanted into the body to alter or record impulse conduction. This study characterizes thiol-ene/acrylate polymers to determine which synthesis methods constitute an ideal substrate for neural implants. To achieve a desired Tg between 50 and 56.5 °C, curing conditions, polymer thickness, monomer ratios, and water uptake were all examined and controlled for. Characterization with dynamic mechanical analysis and thermal gravimetric analysis reveals that thin, thiol-ene/acrylate polymers composed of at least 50 mol % acrylate content and cured for at least 1 h at 365 nm are promising as substrates for neural electrodes.

18.
J Mater Chem B ; 4(32): 5367-5374, 2016 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32263460

RESUMO

Softening microelectrode arrays, or flexible bioelectronic systems which can dynamically change modulus under the application of an external stimulus such as heat or electromagnetic radiation, have been of significant interest in the literature within the previous decade. Through their ability to actively soften in vivo, these devices have shown the capacity to attenuate the neuronal damage associated with insertion of rigid microelectrode arrays into soft tissue. Thiol-click substrates specifically have shown particularly impressive results for fabricating devices requiring small-scale, high-performance electronics for neural recording. However, previous attempts to engineer increasingly lower-modulus substrates for these devices have failed due to the fundamental chemistries' (the thioether linkage) flexibility. This failure has led to substrates without sufficient mechanical rigidity for penetrating soft tissue at physiological temperatures, or sufficient softening capacity to reduce the mechanical mismatch between soft tissue and implantable device. In this work, a ternary thiol-epoxy/maleimide network is investigated as a potential substrate materials space in which the degree of softening can be modulated without sacrificing the mechanical rigidity at physiological temperatures. Using these networks as platforms for the microfabrication of electrode arrays, example implantable intracortical microelectrode arrays are fabricated on both thiol-epoxy and thiol-epoxy/maleimide networks to demonstrate the insertion capacity of microelectrode arrays on the ternary polymer networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...