Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Idowu Bolade Olawoye; Paul Eniola Oluniyi; Edyth Parker; Judith Uche Oguzie; Jessica Nnenna Uwanibe; Tolulope Adeyemi Kayode; Fehintola Victoria Ajogbasile; Testimony Jesupamilerin Olumade; Philomena Eromon; Priscilla Abechi; Tope Sobajo; Chinedu Ugwu; George Uwem; Femi Ayoade; Kazeem Akano; Oluwasemilogo Oluwasekunolami Akinlo; Julie Oreoluwa Akin-John; Nicholas Oyejide; Olubukola Ayo-Ale; Benjamin Adegboyega; Grace Chizaramu Chukwu; Ayomide Adeleke; Grace Opemipo Ezekiel; Farida Brimmo; Olanrewaju Odunyemi Fayemi; Iyanuoluwa Fred-Akintunwa; Ibrahim F. Yusuf; Testimony Oluwatise Ipaye; Oluwagboadurami John; Ahmed Iluoreh Muhammad; Deborah Chisom Nwodo; Olusola Akinola Ogunsanya; Johnson Okolie; Abolade Esther Omoniyi; Iyobosa Beatrice Omwanghe; Oludayo Oluwaseyi Ope-ewe; Shobi Otitoola; Kemi Adedotun-Suleiman; Courage Philip; Mudasiru Femi Saibu; Ayotunde Elijah Sijuwola; Christabel Anamuma Terkuma; Augustine Abu; Johnson Adekunle Adeniji; Moses Olubusuyi Adewunmi; Olufemi Oluwapelumi Adeyemi; Rahaman Ahmed; Anthony Ahumibe; Anthony Nnennaya Ajayi; Olusola Akanbi; Olatunji Akande; Monilade Akinola; Afolabi Akinpelu; George Akpede; Ekanem Anieno; Antjony E. Atage; Oyeronke Ayansola; Marycelin Baba; Olajumoke Babatunde; Bamidele Soji Oderinde; Ebo Benevolence; Osiemi Blessing; Mienye Bob-Manuel; Andrew Bock-Oruma; Aire Chris; Chimaobi Chukwu; Funmi Daramola; Adomeh Donatus; Rosemay Duruihuoma; Yerumoh Edna; Matthew Ekeh; Erim Ndoma; Richard Ewah; Akinwumi Fajola; Enoch Olowatosin Fakayode; Adeola Fowotade; Galadima Gadzama; Daniel Igwe; Odia Ikponmwosa; Rafiu Olasunkanmi Isamotu; Agbukor Jacqueline; Aiyepada John; Julie Johnson Ekpo; Ibrahim Kida; Nwando Mba; Airende Micheal; Mirabeau Youtchou Tatfeng; Worbianueri Beatrice Moore-Igwe; Anietie Moses; Okonofua Naregose; Nsikak-Abasi Ntia; Ifeanyi Nwafor; Elizabeth Odeh; Ephraim Ogbaini; Kingsley Chiedozie Ojide; Sylvanus Okogbenin; Peter Okokhere; Sylvanus Okoro; Azuka Okwuraiwe; Olisa Olasunkanmi; Oluseyi Olayinka; Adesuyi Omoare; Ewean Chukwuma Omoruyi; Hannah E. Omunakwe; Emeka Onwe Ogah; Chika Onwuamah; Venatious Onyia; Akhilomen Patience; Ebhodaghe Paulson; Omiunu Racheal; Esumeh Rita; Giwa Rosemary; Joseph Shaibu; Joseph Shaibu; Ehikhametalor Solomon; Ngozi Ugwu; Collins Nwachi Ugwu; Kingsley Ukwuaja; Zara Wudiri; Nnaemeka Ndodo; Brittany Petros; Bronwyn Mcannis; Cyril Oshomah; Femi Oladiji; Katherine J. Siddle; Rosemary Audu; Babatunde Lawal Salako; Stephen Schaffner; Danny Park; Ifedayo Adetifa; Chikwe Ihekweazu; Oyewale Tomori; Anise Nkenjop Happi; Onikepe Folarin; Kristian G. Andersen; Pardis C. Sabeti; Christian Tientcha Happi.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280269

RESUMO

Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the B.1.1.318 and B.1.525 variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Our results show how regional connectivity in downsampled regions like Africa can often influence virus transmissions between neighbouring countries. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission in the region, generating actionable information for public health decision makers in the region.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275319

RESUMO

The first step in SARS-CoV-2 genomic surveillance is testing to identify infected people. However, global testing rates are falling as we emerge from the acute health emergency and remain low in many low- and middle-income countries (LMICs) (mean = 27 tests/100,000 people/day). We simulated COVID-19 epidemics in a prototypical LMIC to investigate how testing rates, sampling strategies, and sequencing proportions jointly impact surveillance outcomes and showed that low testing rates and spatiotemporal biases delay time-to-detection of new variants by weeks-to-months and can lead to unreliable estimates of variant prevalence even when the proportion of samples sequenced is increased. Accordingly, investments in wider access to diagnostics to support testing rates of [~]100 tests/100,000 people/day could enable more timely detection of new variants and reliable estimates of variant prevalence. The performance of global SARS-CoV-2 genomic surveillance programs is fundamentally limited by access to diagnostic testing.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273909

RESUMO

BackgroundMonitoring the emergence and spread of SARS-CoV-2 variants is an important public health objective. Travel restrictions, aimed to prevent viral spread, have major economic consequences and unclear effectiveness despite considerable research. We investigated the introduction and establishment of the Gamma variant in New York City (NYC) in 2021. MethodsWe performed phylogeographic analysis on 15,967 Gamma sequences available on GISAID and sampled between March 10th through May 1st, 2021, to identify geographic sources of Gamma lineages introduced into NYC. We identified locally circulating Gamma transmission clusters and inferred the timing of their establishment in NYC. FindingsWe identified 16 phylogenetically-distinct Gamma clusters established in NYC (cluster sizes ranged 2-108 genomes). Most of the NYC clusters were introduced from Florida and Illinois; only one was introduced from outside the United States (US). By the time the first Gamma case was reported by genomic surveillance in NYC on March 10th, the majority (57%) of circulating Gamma lineages had already been established in the city for at least two weeks. InterpretationDespite the expansion of SARS-CoV-2 genomic surveillance in NYC, there was a substantial gap between Gamma variant introduction and establishment in January/February 2021, and its identification by genomic surveillance in March 2021. Although travel from Brazil to the US was restricted from May 2020 through the end of the study period, this restriction did not prevent Gamma from becoming established in NYC as most introductions occurred from domestic locations.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269922

RESUMO

Regional connectivity and land-based travel have been identified as important drivers of SARS-CoV-2 transmission. However, the generalizability of this finding is understudied outside of well-sampled, highly connected regions such as Europe. In this study, we investigated the relative contributions of regional and intercontinental connectivity to the source-sink dynamics of SARS-CoV-2 for Jordan and the wider Middle East. By integrating genomic, epidemiological and travel data we show that the source of introductions into Jordan was dynamic across 2020, shifting from intercontinental seeding from Europe in the early pandemic to more regional seeding for the period travel restrictions were in place. We show that land-based travel, particularly freight transport, drove introduction risk during the period of travel restrictions. Consistently, high regional connectivity and land-based travel also disproportionately drove Jordans export risk to other Middle Eastern countries. Our findings emphasize regional connectedness and land-based travel as drivers of viral transmission in the Middle East. This demonstrates that strategies aiming to stop or slow the spread of viral introductions (including new variants) with travel restrictions need to prioritize risk from land-based travel alongside intercontinental air travel to be effective. HighlightsO_LIRegional connectivity drove SARS-CoV-2 introduction risk in Jordan during the period travel restrictions were in place in genomic and travel data. C_LIO_LILand-based travel rather than air travel disproportionately drove introduction risk during travel restrictions. C_LIO_LIHigh regional connectivity disproportionately drove Jordans export risk, with significant contribution from land-based travel. C_LIO_LIRegional transmission dynamics were underestimated in genomic data due to unrepresentative sampling. C_LI

5.
Smruthi Karthikeyan; Joshua I Levy; Peter De Hoff; Greg Humphrey; Amanda Birmingham; Kristen Jepsen; Sawyer Farmer; Helena M. Tubb; Tommy Valles; Caitlin E Tribelhorn; Rebecca Tsai; Stefan Aigner; Shashank Sathe; Niema Moshiri; Benjamin Henson; Abbas Hakim; Nathan A Baer; Tom Barber; Pedro Belda-Ferre; Marisol Chacon; Willi Cheung; Evelyn S Crescini; Emily R Eisner; Alma L Lastrella; Elijah S Lawrence; Clarisse A Marotz; Toan T Ngo; Tyler Ostrander; Ashley Plascencia; Rodolfo A Salido; Phoebe Seaver; Elizabeth W Smoot; Daniel McDonald; Robert M Neuhard; Angela L Scioscia; Alysson M. Satterlund; Elizabeth H Simmons; Dismas B. Abelman; David Brenner; Judith Carbone Bruner; Anne Buckley; Michael Ellison; Jeffrey Gattas; Steven L Gonias; Matt Hale; Faith Kirkham Hawkins; Lydia Ikeda; Hemlata Jhaveri; Ted Johnson; Vince Kellen; Brendan Kremer; Gary C. Matthews; Ronald McLawhon; Pierre Ouillet; Daniel Park; Allorah Pradenas; Sharon Reed; Lindsay Riggs; Alison M. Sanders; Bradley Sollenberger; Angela Song; Benjamin White; Terri Winbush; Christine M Aceves; Catelyn Anderson; Karthik Gangavarapu; Emory Hufbauer; Ezra Kurzban; Justin Lee; Nathaniel L Matteson; Edyth Parker; Sarah A Perkins; Karthik S Ramesh; Refugio Robles-Sikisaka; Madison A Schwab; Emily Spencer; Shirlee Wohl; Laura Nicholson; Ian H Mchardy; David P Dimmock; Charlotte A Hobbs; Omid Bakhtar; Aaron Harding; Art Mendoza; Alexandre Bolze; David Becker; Elizabeth T Cirulli; Magnus Isaksson; Kelly M Schiabor Barrett; Nicole L Washington; John D Malone; Ashleigh Murphy Schafer; Nikos Gurfield; Sarah Stous; Rebecca Fielding-Miller; Tommi Gaines; Richard Garfein; Cheryl A. M. Anderson; Natasha K. Martin; Robert T Schooley; Brett Austin; Duncan R. MacCannell; Stephen F Kingsmore; William Lee; Seema Shah; Eric McDonald; Alexander T. Yu; Mark Zeller; Kathleen M Fisch; Christopher A. Longhurst; Patty Maysent; David Pride; Pradeep K. Khosla; Louise C Laurent; Gene W Yeo; Kristian G Andersen; Rob Knight.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268143

RESUMO

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We develop and deploy improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater samples, and identify multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...