Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727994

RESUMO

Herein, a novel series of naphthamide derivatives has been rationally developed, synthesized, and evaluated for their inhibitory activity against monoamine oxidase (MAO) and cholinesterase (ChE) enzymes. Compared to the reported naphthalene-based hit IV, the new naphthamide hybrids 2a, 2c, 2g and 2h exhibited promising MAO inhibitory activities; with an IC50 value of 0.294 µM, compound 2c most potently inhibited MAO-A, while compound 2g exhibited most potent MAO-B inhibitory activity with an IC50 value of 0.519 µM. Compounds 2c and 2g showed selectivity index (SI) values of 6.02 for MAO-A and 2.94 for MAO-B, respectively. On the other hand, most compounds showed weak inhibitory activity against ChEs except 2a and 2h over butyrylcholinesterase (BChE). The most potent compounds 2c and 2g were found to be competitive and reversible MAO inhibitors based on kinetic and reversibility studies. Plausible interpretations of the observed biological effects were provided through molecular docking simulations. The drug-likeness predicted by SwissADME and Osiris property explorer showed that the most potent compounds (2a, 2c, 2g, and 2h) obey Lipinski's rule of five. Accordingly, in the context of neurological disorders, hybrids 2c and 2g may contribute to the identification of safe and potent therapeutic approaches in the near future.

3.
Inflammopharmacology ; 31(6): 2857-2883, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37950803

RESUMO

Chronic inflammation is a common underlying factor in many major diseases, including heart disease, diabetes, cancer, and autoimmune disorders, and is responsible for up to 60% of all deaths worldwide. Metformin, statins, and corticosteroids, and NSAIDs (non-steroidal anti-inflammatory drugs) are often given as anti-inflammatory pharmaceuticals, however, often have even more debilitating side effects than the illness itself. The natural product-based therapy of inflammation-related diseases has no adverse effects and good beneficial results compared to substitute conventional anti-inflammatory medications. In this review article, we provide a concise overview of present pharmacological treatments, the pathophysiology of inflammation, and the signaling pathways that underlie it. In addition, we focus on the most promising natural products identified as potential anti-inflammatory therapeutic agents. Moreover, preclinical studies and clinical trials evaluating the efficacy of natural products as anti-inflammatory therapeutic agents and their pragmatic applications with promising outcomes are reviewed. In addition, the safety, side effects and technical barriers of natural products are discussed. Furthermore, we also summarized the latest technological advances in the discovery and scientific development of natural products-based medicine.


Assuntos
Doenças Autoimunes , Produtos Biológicos , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Doenças Autoimunes/tratamento farmacológico
4.
Biomed Pharmacother ; 168: 115734, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857245

RESUMO

Nowadays, diabetes mellitus has emerged as a significant global public health concern with a remarkable increase in its prevalence. This review article focuses on the definition of diabetes mellitus and its classification into different types, including type 1 diabetes (idiopathic and fulminant), type 2 diabetes, gestational diabetes, hybrid forms, slowly evolving immune-mediated diabetes, ketosis-prone type 2 diabetes, and other special types. Diagnostic criteria for diabetes mellitus are also discussed. The role of inflammation in both type 1 and type 2 diabetes is explored, along with the mediators and potential anti-inflammatory treatments. Furthermore, the involvement of various organs in diabetes mellitus is highlighted, such as the role of adipose tissue and obesity, gut microbiota, and pancreatic ß-cells. The manifestation of pancreatic Langerhans ß-cell islet inflammation, oxidative stress, and impaired insulin production and secretion are addressed. Additionally, the impact of diabetes mellitus on liver cirrhosis, acute kidney injury, immune system complications, and other diabetic complications like retinopathy and neuropathy is examined. Therefore, further research is required to enhance diagnosis, prevent chronic complications, and identify potential therapeutic targets for the management of diabetes mellitus and its associated dysfunctions.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Gravidez , Feminino , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Insulina/uso terapêutico , Inflamação/complicações
5.
ACS Omega ; 8(35): 31784-31800, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692247

RESUMO

The epidermal growth factor receptor (EGFR) is vital for regulating cellular functions, including cell division, migration, survival, apoptosis, angiogenesis, and cancer. EGFR overexpression is an ideal target for anticancer drug development as it is absent from normal tissues, marking it as tumor-specific. Unfortunately, the development of medication resistance limits the therapeutic efficacy of the currently approved EGFR inhibitors, indicating the need for further development. Herein, a machine learning-based application that predicts the bioactivity of novel EGFR inhibitors is presented. Clustering of the EGFR small-molecule inhibitor (∼9000 compounds) library showed that N-substituted quinazolin-4-amine-based compounds made up the largest cluster of EGFR inhibitors (∼2500 compounds). Taking advantage of this finding, rational drug design was used to design a novel series of 4-anilinoquinazoline-based EGFR inhibitors, which were first tested by the developed artificial intelligence application, and only the compounds which were predicted to be active were then chosen to be synthesized. This led to the synthesis of 18 novel compounds, which were subsequently evaluated for cytotoxicity and EGFR inhibitory activity. Among the tested compounds, compound 9 demonstrated the most potent antiproliferative activity, with 2.50 and 1.96 µM activity over MCF-7 and MDA-MB-231 cancer cell lines, respectively. Moreover, compound 9 displayed an EGFR inhibitory activity of 2.53 nM and promising apoptotic results, marking it a potential candidate for breast cancer therapy.

6.
J Enzyme Inhib Med Chem ; 38(1): 2242714, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592917

RESUMO

A new wave of dual Topo I/II inhibitors was designed and synthesised via the hybridisation of spirooxindoles and pyrimidines. In situ selenium nanoparticles (SeNPs) for some derivatives were synthesised. The targets and the SeNP derivatives were examined for their cytotoxicity towards five cancer cell lines. The inhibitory potencies of the best members against Topo I and Topo II were also assayed besides their DNA intercalation abilities. Compound 7d NPs exhibited the best inhibition against Topo I and Topo II enzymes with IC50 of 0.042 and 1.172 µM, respectively. The ability of compound 7d NPs to arrest the cell cycle and induce apoptosis was investigated. It arrested the cell cycle in the A549 cell at the S phase and prompted apoptosis by 41.02% vs. 23.81% in the control. In silico studies were then performed to study the possible binding interactions between the designed members and the target proteins.


A new wave of dual Topo I/II inhibitors was designed and synthesised via the hybridisation of spirooxindoles and pyrimidines.In situ selenium nanoparticles (SeNPs) for some derivatives were synthesised.Cytotoxicity, Topo I and Topo II inhibitory assays, and DNA intercalation abilities were evaluated.Compound 7d NPs showed the best Topo I and Topo II inhibition.Cell cycle arrest, apoptosis induction, and molecular docking studies were performed.


Assuntos
Nanopartículas , Selênio , Selênio/farmacologia , Substâncias Intercalantes/farmacologia , Ciclo Celular , DNA Topoisomerases Tipo II , DNA
7.
J Biomol Struct Dyn ; : 1-13, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505066

RESUMO

The proteolytic enzyme 3 C-like protease (3Clpro or Mpro) is considered the most important target for SARS-CoV-2 which could be attributed to its crucial role in viral maturation and/or replication. Besides, natural phytoconstituents from plant origin are always promising lead compounds in the drug discovery area. Herein, the previously isolated and identified seven compounds from Jasminum humile (J. humile) were examined in vitro and in silico against the SARS-CoV-2 Mpro. First, the Vero E6 cells were utilized to pursue the potential of the investigated compounds (both in fractions and individual isolates) using the MTT assay. The total extract (T1) displayed the most significant activity against SARS-CoV-2 with IC50 = 29.36 µg/mL. Besides, the fractions (Fr1 and Fr3) showed good activity against the SARS-CoV-2 with IC50 values of 70.42, and 73.09 µg/mL, respectively. Then, the SARS-CoV-2 Mpro inhibitory assay was utilized to emphasize the inhibitory potential of the investigated isolates. MJN, JMD, and IJM candidates displayed prominent Mpro inhibitory potentials with IC50 = 30.44, 30.24, and 56.25 µM, respectively. Moreover, molecular docking of the identified seven compounds against the Mpro of SARS-CoV-2 showed that the five secoiridoids achieved superior results. MJN, JSM, IJM, and JMD showed higher affinities towards the Mpro target compared to the co-crystallized antagonist. Furthermore, the most active complexes (MJN, JSM, IJM, and JMD-Mpro) were subjected to MD simulations run for 150 ns and MM-GBSA calculations, compared to the co-crystallized inhibitor (O6K-Mpro). Finally, the SAR study clarified that JMD achieved the best anti-SARS-CoV-2 Mpro activity followed by MJN.Communicated by Ramaswamy H. Sarma.


HIGHLIGHTSSeven isolates from J. humile, besides different extracts, were examined both in vitro and in silico.Anti-SARS-CoV-2 using the MTT assay and anti-SARS-CoV-2 Mpro inhibitory assay were performed.Compounds MJN, JMD, and IJM displayed prominent SARS-CoV-2 Mpro inhibition.Molecular docking, molecular dynamics simulations, and MM-GBSA calculations were carried out.SAR study was conducted on the isolated compounds.

8.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298401

RESUMO

The proto-oncogenic protein, c-KIT, plays a crucial role in regulating cellular transformation and differentiation processes, such as proliferation, survival, adhesion, and chemotaxis. The overexpression of, and mutations, in c-KIT can lead to its dysregulation and promote various human cancers, particularly gastrointestinal stromal tumors (GISTs); approximately 80-85% of cases are associated with oncogenic mutations in the KIT gene. Inhibition of c-KIT has emerged as a promising therapeutic target for GISTs. However, the currently approved drugs are associated with resistance and significant side effects, highlighting the urgent need to develop highly selective c-KIT inhibitors that are not affected by these mutations for GISTs. Herein, the recent research efforts in medicinal chemistry aimed at developing potent small-molecule c-KIT inhibitors with high kinase selectivity for GISTs are discussed from a structure-activity relationship perspective. Moreover, the synthetic pathways, pharmacokinetic properties, and binding patterns of the inhibitors are also discussed to facilitate future development of more potent and pharmacokinetically stable small-molecule c-KIT inhibitors.


Assuntos
Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Humanos , Tumores do Estroma Gastrointestinal/genética , Inibidores Enzimáticos/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , Relação Estrutura-Atividade , Oncogenes , Mutação , Neoplasias Gastrointestinais/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética
9.
J Enzyme Inhib Med Chem ; 38(1): 2205043, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37165800

RESUMO

Topoisomerases II are ubiquitous enzymes with significant genotoxic effects in many critical DNA processes. Additionally, epidermal growth factor receptor (EGFR) plays pivotal role in tumour growth and angiogenesis. A novel series of naphtho[2',3':4,5]thiazolo[3,2-a]pyrimidine hybrids have been designed, synthesised and evaluated for their topo IIα/EGFR inhibitory and apoptotic inducer activities. Cytotoxicity of the synthesised hybrids was evaluated against MCF-7, A549 and HCT-116 cell lines. Of the synthesised hybrids, 6i, 6a and 6c experienced superior cytotoxic activity compared to doxorubicin and erlotinib against the tested cancer cells. The molecular mechanism of these hybrids revealed their ability to successfully inhibit topo IIα and EGFR activities in micromolar concentration and may serve as topo II catalytic inhibitor. Moreover, these hybrids significantly arrested cell cycle at G2/M phase together with increased p53, caspae-7, caspase-9 levels and Bax/Bcl-2 ratio. The synthesised hybrids showed efficient binding pattern in molecular docking study and have acceptable drug likeness characters.


Assuntos
Antineoplásicos , Simulação de Acoplamento Molecular , Antineoplásicos/química , DNA Topoisomerases Tipo II/metabolismo , Receptores ErbB/metabolismo , Apoptose , Pirimidinas/farmacologia , Inibidores da Topoisomerase II/química , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Relação Estrutura-Atividade , Linhagem Celular Tumoral
10.
J Enzyme Inhib Med Chem ; 38(1): 2202358, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37096560

RESUMO

Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) protein tyrosine kinases co-expressed in various cancers such as ovarian, breast, colon, and prostate subtypes. Herein, new TAK-285 derivatives (9a-h) were synthesised, characterised, and biologically evaluated as dual EGFR/HER2 inhibitors. Compound 9f exhibited IC50 values of 2.3 nM over EGFR and 234 nM over HER2, which is 38-fold of staurosporine and 10-fold of TAK-285 over EGFR. Compound 9f also showed high selectivity profile when tested over a small kinase panel. Compounds 9a-h showed IC50 values in the range of 1.0-7.3 nM and 0.8-2.8 nM against PC3 and 22RV1 prostate carcinoma cell lines, respectively. Cell cycle analysis, apoptotic induction, molecular docking, dynamics, and MM-GBSA studies confirmed the plausible mechanism(s) of compound 9f as a potent EGFR/HER2 dual inhibitor with an effective antiproliferative action against prostate carcinoma.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias da Próstata , Masculino , Humanos , Simulação de Acoplamento Molecular , Próstata , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Receptores ErbB
11.
Metabolites ; 13(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837759

RESUMO

Antioxidant small molecules can prevent or delay the oxidative damage caused by free radicals. Herein, a structure-based hybridization of two natural antioxidants (caffeic acid and melatonin) afforded a novel hybrid series of indole-based amide analogues which was synthesized with potential antioxidant properties. A multiple-step scheme of in vitro radical scavenging assays was carried out to evaluate the antioxidant activity of the synthesized compounds. The results of the DPPH assay demonstrated that the indole-based caffeic acid amides are more active free radical scavenging agents than their benzamide analogues. Compared to Trolox, a water-soluble analogue of vitamin E, compounds 3a, 3f, 3h, 3j, and 3m were found to have excellent DPPH radical scavenging activities with IC50 values of 95.81 ± 1.01, 136.8 ± 1.04, 86.77 ± 1.03, 50.98 ± 1.05, and 67.64 ± 1.02 µM. Three compounds out of five (3f, 3j, and 3m) showed a higher capacity to neutralize the radical cation ABTS•+ more than Trolox with IC50 values of 14.48 ± 0.68, 19.49 ± 0.54, and 14.92 ± 0.30 µM, respectively. Compound 3j presented the highest antioxidant activity with a FRAP value of 4774.37 ± 137.20 µM Trolox eq/mM sample. In a similar way to the FRAP assay, the best antioxidant activity against the peroxyl radicals was demonstrated by compound 3j (10,714.21 ± 817.76 µM Trolox eq/mM sample). Taken together, compound 3j was validated as a lead hybrid molecule that could be optimized to maximize its antioxidant potency for the treatment of oxidative stress-related diseases.

12.
J Enzyme Inhib Med Chem ; 38(1): 2171029, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36701269

RESUMO

Topoisomerase II (TOP-2) is a promising molecular target for cancer therapy. Numerous antibiotics could interact with biologically relevant macromolecules and provoke antitumor potential. Herein, molecular docking studies were used to investigate the binding interactions of 138 antibiotics against the human topoisomerase II-DNA complex. Followed by the MD simulations for 200 ns and MM-GBSA calculations. On the other hand, the antitumor activities of the most promising candidates were investigated against three cancer cell lines using doxorubicin (DOX) as a reference drug. Notably, spiramycin (SP) and clarithromycin (CL) showed promising anticancer potentials on the MCF-7 cell line. Moreover, azithromycin (AZ) and CL exhibited good anticancer potentials against the HCT-116 cell line. Finally, the TOP-2 enzyme inhibition assay was carried out to confirm the proposed rationale. Briefly, potent TOP-2 inhibitory potentials were recorded for erythromycin (ER) and roxithromycin (RO). Additionally, a SAR study opened eyes to promising anticancer pharmacophores encountered by these antibiotics.HighlightsMolecular docking studies of 139 antibiotics against the topoisomerase II-DNA complex.SP, RO, AZ, CL, and ER were the most promising and commercially available candidates.Molecular dynamics simulations for 200 ns for the most promising five complexes.MM-GBSA calculations for the frontier five complexes.SP and CL showed promising anticancer potentials on the MCF-7 cell line, besides, AZ and CL exhibited good anticancer potentials against the HCT-116 cell line.Potent TOP-2 inhibitory potentials were recorded for ER and RO.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase II , Humanos , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Substâncias Intercalantes/farmacologia , Antibacterianos/farmacologia , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Linhagem Celular Tumoral , DNA , DNA Topoisomerases Tipo II/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais
13.
J Med Chem ; 66(1): 777-792, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36525642

RESUMO

Telomerase is an outstanding biological target for cancer treatment. BIBR1532 is a non-nucleoside selective telomerase inhibitor; however, it experiences ineligible pharmacokinetics. Herein, we aimed to design new BIBR1532-based analogues as promising telomerase inhibitors. Therefore, two novel series of pyridazine-linked to cyclopenta[b]thiophene (8a-f) and tetrahydro-1-benzothiophene (9a-f) were synthesized. A quantitative real-time polymerase chain reaction was utilized to investigate the telomerase inhibitory activity of candidates. Notably, 8e and 9e exhibited the best inhibition profiles. Moreover, 8e showed strong antitumor effects against both MCF-7 and A549 cancer cell lines. The effects of 8e on the cell cycle and apoptosis were measured. Besides, 8e was evaluated for its in vivo antitumor activity using solid Ehrlich carcinoma. The reduction in both the tumor weight and volume was greater than doxorubicin. Also, molecular docking and ADME studies were performed. Finally, a SAR study was conducted to gain further insights into the different telomerase inhibition potentials upon variable structural modifications.


Assuntos
Antineoplásicos , Telomerase , Cães , Animais , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Ligantes , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
14.
PeerJ ; 10: e14120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225900

RESUMO

The rapid spread of the coronavirus since its first appearance in 2019 has taken the world by surprise, challenging the global economy, and putting pressure on healthcare systems across the world. The introduction of preventive vaccines only managed to slow the rising death rates worldwide, illuminating the pressing need for developing effective antiviral therapeutics. The traditional route of drug discovery has been known to require years which the world does not currently have. In silico approaches in drug design have shown promising results over the last decade, helping to decrease the required time for drug development. One of the vital non-structural proteins that are essential to viral replication and transcription is the SARS-CoV-2 main protease (Mpro). Herein, using a test set of recently identified COVID-19 inhibitors, a pharmacophore was developed to screen 20 million drug-like compounds obtained from a freely accessible Zinc database. The generated hits were ranked using a structure based virtual screening technique (SBVS), and the top hits were subjected to in-depth molecular docking studies and MM-GBSA calculations over SARS-COV-2 Mpro. Finally, the most promising hit, compound (1), and the potent standard (III) were subjected to 100 ns molecular dynamics (MD) simulations and in silico ADME study. The result of the MD analysis as well as the in silico pharmacokinetic study reveal compound 1 to be a promising SARS-Cov-2 MPro inhibitor suitable for further development.


Assuntos
Antivirais , Proteases 3C de Coronavírus , SARS-CoV-2 , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , Proteases 3C de Coronavírus/antagonistas & inibidores , Antivirais/farmacologia
15.
Front Pharmacol ; 13: 958379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267293

RESUMO

Saccharine is a pharmacologically significant active scaffold for various biological activities, including antibacterial and anticancer activities. Herein, saccharinyl hydrazide (1) was synthesized and converted into 2-[(2Z)-2-(1,1-dioxo-1,2-dihydro-3H-1λ6,2- benzothiazole-3-ylidene) hydrazinyl] acetohydrazide (5), which was employed as a key precursor for synthesizing a novel series of small molecules bearing different moieties of monosaccharides, aldehydes, and anhydrides. Potent biological activities were found against Staphylococcus and Escherichia coli , and the results indicated that compounds 6c and 10a were the most active analogs with an inhibition zone diameter of 30-35 mm . In cell-based anticancer assay over Ovcar-3 and M-14 cell lines, compound 10a was the most potent analog with IC50 values of 7.64 ± 0.01 and 8.66 ± 0.01 µM, respectively. The Petra Orisis Molinspiration (POM) theoretical method was used to calculate the drug score of tested compounds and compare them with their experimental screening data. Theoretical DFT calculations were carried out in a gas phase in a set of B3LYP 6-311G (d,p). Molecular docking studies utilizing the MOE indicated the best binding mode with the highest energy interaction within the binding sites. The molecular docking for Ovcar-3 was carried out on the ovarian cancer protein (3W2S), while the molecular docking for M-14 melanoma was carried out on the melanoma cancer protein (2OPZ). The MD performed about 2ns simulations to validate selected compounds' theoretical studies.

16.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077298

RESUMO

Pharmacological inhibition of the enzyme activity targeting carbonic anhydrases (CAs) demonstrated antiglaucoma and anticancer effects through pH control. Recently, we reported a series of indole-based benzenesulfonamides as potent CA inhibitors. The present study aimed to evaluate the antitumor effects of these compounds against various cancer cell lines, including breast cancer (MDA-MB-231, MCF-7, and SK-BR-3), lung cancer (A549), and pancreatic cancer (Panc1) cells. Overall, more potent cytotoxicity was observed on MCF-7 and SK-BR-3 cells than on lung or pancreatic cancer cells. Among the 15 compounds tested, A6 and A15 exhibited potent cytotoxic and antimigratory activities against MCF-7 and SK-BR-3 cells in the CoCl2-induced hypoxic condition. While A6 and A15 markedly reduced the viability of control siRNA-treated cells, these compounds could not significantly reduce the viability of CA IX-knockdown cells, suggesting the role of CA IX in their anticancer activities. To assess whether these compounds exerted synergism with a conventional anticancer drug doxorubicin (DOX), the cytotoxic effects of A6 or A15 combined with DOX were analyzed using Chou-Talalay and Bliss independence methods. Our data revealed that both A6 and A15 significantly enhanced the anticancer activity of DOX. Among the tested pairs, the combination of DOX with A15 showed the strongest synergism on SK-BR-3 cells. Moreover, this combination further attenuated cell migration compared to the respective drug. Collectively, our results demonstrated that A6 and A15 suppressed tumor growth and cell migration of MCF-7 and SK-BR-3 cells through inhibition of CA IX, and the combination of these compounds with DOX exhibited synergistic cytotoxic effects on these breast cancer cells. Therefore, A6 and A15 may serve as potential anticancer agents alone or in combination with DOX against breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias Pancreáticas , Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Doxorrubicina/química , Sinergismo Farmacológico , Feminino , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Células MCF-7 , Neoplasias Pancreáticas/tratamento farmacológico
17.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36145271

RESUMO

Death-associated protein kinase 1 (DAPK1) is a serine/threonine protein kinase involved in diverse fundamental cellular processes such as apoptosis and autophagy. DAPK1 isoform plays an essential role as a tumor suppressor and inhibitor of metastasis. Consequently, DAPK1 became a promising target protein for developing new anti-cancer agents. In this work, we present the rational design and complete synthetic routes of a novel series of eighteen aryl carboxamide derivatives as potential DAPK1 inhibitors. Using a custom panel of forty-five kinases, a single dose of 10 µM of the picolinamide derivative 4a was able to selectively inhibit DAPK1 kinase by 44.19%. Further investigations revealed the isonicotinamide derivative 4q as a promising DAPK1 inhibitory lead compound with an IC50 value of 1.09 µM. In an in vitro anticancer activity assay using a library of 60 cancer cell lines including blood, lung, colon, CNS, skin, ovary, renal, prostate, and breast cancers, four compounds (4d, 4e, 4o, and 4p) demonstrated high anti-proliferative activity with mean % GI ~70%. Furthermore, the most potent DAPK1 inhibitor (4q) exhibited remarkable activity against leukemia (K-562) and breast cancer (MDA-MB-468) with % GI of 72% and 75%, respectively.

18.
Pharmaceutics ; 14(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36145702

RESUMO

Inhibition of PDE5 results in elevation of cGMP leading to vascular relaxation and reduction in the systemic blood pressure. Therefore, PDE5 inhibitors are used as antihypertensive and antianginal agents in addition to their major use as male erectile dysfunction treatments. Previously, we developed a novel series of 34 pyridopyrazinone derivatives as anticancer agents (series A-H). Herein, a multi-step in silico approach was preliminary conducted to evaluate the predicted PDE5 inhibitory activity, followed by an in vitro biological evaluation over the enzymatic level and a detailed SAR study. The designed 2D-QSAR model which was carried out to predict the IC50 of the tested compounds revealed series B, D, E and G with nanomolar range of IC50 values (6.00-81.56 nM). A further docking simulation model was performed to investigate the binding modes within the active site of PDE5. Interestingly, most of the tested compounds showed almost the same binding modes of that of reported PDE5 inhibitors. To validate the in silico results, an in vitro enzymatic assay over PDE5 enzyme was performed for a number of the promising candidates with different substitutions. Both series E and G exhibited a potent inhibitory activity (IC50 = 18.13-41.41 nM). Compound 11b (series G, oxadiazole-based derivatives with terminal 4-NO2 substituted phenyl ring and rigid linker) was the most potent analogue with IC50 value of 18.13 nM. Structure-activity relationship (SAR) data attained for various substitutions were rationalized. Furthermore, a molecular dynamic simulation gave insights into the inhibitory activity of the most active compound (11b). Accordingly, this report presents a successful scaffold repurposing approach that reveals compound 11b as a highly potent nanomolar PDE5 inhibitor worthy of further investigation.

19.
Eur J Med Chem ; 242: 114692, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36029560

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that causes uncontrollable movements. Although many breakthroughs in PD therapy have been accomplished, there is currently no cure for PD, and only trials to relieve symptoms have been evaluated. Recently, we reported the total synthesis of cudraisoflavone J and its chiral isomers [Lu et al., J. Nat. Prod. 2021, 84, 1359]. In this study, we designed and synthesized a series of novel cudraisoflavone J derivatives and evaluated their neuroprotective activities in neurotoxin-treated PC12 cells. Among these compounds, difluoro-substituted derivative (13m) and prenylated derivative (24) provided significant protection to PC12 cells against toxicity induced by 6-hydroxydopamine (6-OHDA) or rotenone. Both derivatives inhibited 6-OHDA- or rotenone-induced production of reactive oxygen species and partially attenuated lipid peroxidation in rat brain homogenates, indicating their antioxidant properties. They also increased the expression of the antioxidant enzyme, heme oxygenase (HO)-1, and enhanced the nuclear translocation of Nrf2, the transcription factor that regulates the expression of antioxidant proteins. The neuroprotective effects of 13m and 24 were eliminated by Zn(II)-protoporphyrin IX, an HO-1 inhibitor, demonstrating the critical role of HO-1 in their actions. Moreover, upregulation of HO-1 was abolished by nuclear factor erythroid 2-related factor (Nrf2) knockdown, verifying that Nrf2 is an upstream regulator of HO-1. Compounds 13m and 24 triggered phosphorylation of ERK1/2, JNK, and Akt. Most importantly, 13m- and 24-induced enhancement of Nrf2 translocation and HO-1 expression was reversed by U0126 (an ERK inhibitor), SP600125 (a JNK inhibitor), and LY294002 (an Akt inhibitor). Collectively, our results show that compounds 13m and 24 exert neuroprotective and antioxidant effects through the Nrf2/HO-1 pathway mediated by phosphorylation of ERK1/2, JNK, or Akt in PC12 cells. Based on our findings, both derivatives could serve as potential therapeutic candidates for the neuroprotective treatment of PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Ratos , Antioxidantes/farmacologia , Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP2B1/farmacologia , Heme Oxigenase-1/metabolismo , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Oxidopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Inibidores da Agregação Plaquetária/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia
20.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35890102

RESUMO

A new family of pyrazole-based compounds (1-15) was synthesized and characterized using different physicochemical analyses, such as FTIR, UV-Visible, 1H, 13C NMR, and ESI/LC-MS. The compounds were evaluated for their in vitro antifungal and antibacterial activities against several fungal and bacterial strains. The results indicate that some compounds showed excellent antibacterial activity against E. coli, S. aureus, C. freundii, and L. monocytogenes strains. In contrast, none of the compounds had antifungal activity. Molecular electrostatic potential (MEP) map analyses and inductive and mesomeric effect studies were performed to study the relationship between the chemical structure of our compounds and the biological activity. In addition, molecular docking and virtual screening studies were carried out to rationalize the antibacterial findings to characterize the modes of binding of the most active compounds to the active pockets of NDM1 proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...