Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 24, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631473

RESUMO

The National Institute of Health (NIH) Library of integrated network-based cellular signatures (LINCS) program is premised on the generation of a publicly available data resource of cell-based biochemical responses or "signatures" to genetic or environmental perturbations. NeuroLINCS uses human inducible pluripotent stem cells (hiPSCs), derived from patients and healthy controls, and differentiated into motor neuron cell cultures. This multi-laboratory effort strives to establish i) robust multi-omic workflows for hiPSC and differentiated neuronal cultures, ii) public annotated data sets and iii) relevant and targetable biological pathways of spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Here, we focus on the proteomics and the quality of the developed workflow of hiPSC lines from 6 individuals, though epigenomics and transcriptomics data are also publicly available. Known and commonly used markers representing 73 proteins were reproducibly quantified with consistent expression levels across all hiPSC lines. Data quality assessments, data levels and metadata of all 6 genetically diverse human iPSCs analysed by DIA-MS are parsable and available as a high-quality resource to the public.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Proteoma , Humanos , Neurônios Motores , Proteoma/metabolismo , Proteômica
2.
iScience ; 24(11): 103221, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34746695

RESUMO

Neurodegenerative diseases are challenging for systems biology because of the lack of reliable animal models or patient samples at early disease stages. Induced pluripotent stem cells (iPSCs) could address these challenges. We investigated DNA, RNA, epigenetics, and proteins in iPSC-derived motor neurons from patients with ALS carrying hexanucleotide expansions in C9ORF72. Using integrative computational methods combining all omics datasets, we identified novel and known dysregulated pathways. We used a C9ORF72 Drosophila model to distinguish pathways contributing to disease phenotypes from compensatory ones and confirmed alterations in some pathways in postmortem spinal cord tissue of patients with ALS. A different differentiation protocol was used to derive a separate set of C9ORF72 and control motor neurons. Many individual -omics differed by protocol, but some core dysregulated pathways were consistent. This strategy of analyzing patient-specific neurons provides disease-related outcomes with small numbers of heterogeneous lines and reduces variation from single-omics to elucidate network-based signatures.

3.
Biochim Biophys Acta Rev Cancer ; 1876(1): 188548, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33901609

RESUMO

BACKGROUND: The concurrent growth of large-scale oncology data alongside the computational methods with which to analyze and model it has created a promising environment for revolutionizing cancer diagnosis, treatment, prevention, and drug discovery. Computational methods applied to large datasets have accelerated the drug discovery process by reducing bottlenecks and widening the search space beyond what is experimentally tractable. As the research community gains understanding of the myriad genetic underpinnings of cancer via sequencing, imaging, screens, and more that are ingested, transformed, and modeled by top open-source machine learning and artificial intelligence tools readily available, the next big drug candidate might seem merely an "Enter" key away. Of course, the reality is more convoluted, but still promising. SCOPE OF REVIEW: We present methods to approach the process of building an AI model, with strong emphasis on the aspects of model development we believe to be crucial to success but that are not commonly discussed: diligence in posing questions, identifying suitable datasets and curating them, and collaborating closely with biology and oncology experts while designing and evaluating the model. Digital pathology, Electronic Health Records, and other data types outside of high-throughput molecular data are reviewed well by others and outside of the scope of this review. This review emphasizes the importance of considering the limitations of the datasets, computational methods, and our minds when designing AI models. For example, datasets can be biased towards areas of research interest, funding, and particular patient populations. Neural networks may learn representations and correlations within the data that are grounded not in biological phenomena, but statistical anomalies erroneously extracted from the training data. Researchers may mis-interpret or over-interpret the output, or design and evaluate the training process such that the resultant model generalizes poorly. Fortunately, awareness of the strengths and limitations of applying data analytics and AI to drug discovery enables us to leverage them carefully and insightfully while maximizing their utility. These applications when performed in close collaboration with domain experts, together with continuous critical evaluation, generation of new data to minimize known blind spots as they are found, and rigorous experimental validation, increases the success rate of the study. We will discuss applications including AI-assisted target identification, drug repurposing, patient stratification, and gene prioritization. MAJOR CONCLUSIONS: Data analytics and AI have demonstrated capabilities to revolutionize cancer research, prevention, and treatment by maximizing our understanding and use of the expanding panoply of experimental data. However, to separate promise from true utility, computational tools must be carefully designed, critically evaluated, and constantly improved. Once that is achieved, a human-computer hybrid discovery process will outperform one driven by each alone. GENERAL SIGNIFICANCE: This review highlights the challenges and promise of synergizing predictive AI models with human expertise towards greater understanding of cancer.


Assuntos
Inteligência Artificial , Pesquisa Biomédica , Mineração de Dados , Bases de Dados Factuais , Oncologia , Animais , Confiabilidade dos Dados , Humanos , Aprendizado de Máquina
4.
J Transl Med ; 18(1): 257, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32586380

RESUMO

BACKGROUND: The recent global pandemic has placed a high priority on identifying drugs to prevent or lessen clinical infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused by Coronavirus disease-2019 (COVID-19). METHODS: We applied two computational approaches to identify potential therapeutics. First, we sought to identify existing FDA approved drugs that could block coronaviruses from entering cells by binding to ACE2 or TMPRSS2 using a high-throughput AI-based binding affinity prediction platform. Second, we sought to identify FDA approved drugs that could attenuate the gene expression patterns induced by coronaviruses, using our Disease Cancelling Technology (DCT) platform. RESULTS: Top results for ACE2 binding iincluded several ACE inhibitors, a beta-lactam antibiotic, two antiviral agents (Fosamprenavir and Emricasan) and glutathione. The platform also assessed specificity for ACE2 over ACE1, important for avoiding counterregulatory effects. Further studies are needed to weigh the benefit of blocking virus entry against potential counterregulatory effects and possible protective effects of ACE2. However, the data herein suggest readily available drugs that warrant experimental evaluation to assess potential benefit. DCT was run on an animal model of SARS-CoV, and ranked compounds by their ability to induce gene expression signals that counteract disease-associated signals. Top hits included Vitamin E, ruxolitinib, and glutamine. Glutathione and its precursor glutamine were highly ranked by two independent methods, suggesting both warrant further investigation for potential benefit against SARS-CoV-2. CONCLUSIONS: While these findings are not yet ready for clinical translation, this report highlights the potential use of two bioinformatics technologies to rapidly discover existing therapeutic agents that warrant further investigation for established and emerging disease processes.


Assuntos
Betacoronavirus/fisiologia , Biologia Computacional , Infecções por Coronavirus/genética , Infecções por Coronavirus/terapia , Pneumonia Viral/genética , Pneumonia Viral/terapia , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/genética , COVID-19 , Regulação da Expressão Gênica , Glutamina/metabolismo , Humanos , Camundongos , Pandemias , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Serina Endopeptidases/metabolismo
5.
Mol Neurodegener ; 13(1): 25, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29783994

RESUMO

BACKGROUND: Huntington Disease (HD) is an incurable autosomal dominant neurodegenerative disorder driven by an expansion repeat giving rise to the mutant huntingtin protein (mHtt), which is known to disrupt a multitude of transcriptional pathways. Pridopidine, a small molecule in development for treatment of HD, has been shown to improve motor symptoms in HD patients. In HD animal models, pridopidine exerts neuroprotective effects and improves behavioral and motor functions. Pridopidine binds primarily to the sigma-1 receptor, (IC50 ~ 100 nM), which mediates its neuroprotective properties, such as rescue of spine density and aberrant calcium signaling in HD neuronal cultures. Pridopidine enhances brain-derived neurotrophic factor (BDNF) secretion, which is blocked by putative sigma-1 receptor antagonist NE-100, and was shown to upregulate transcription of genes in the BDNF, glucocorticoid receptor (GR), and dopamine D1 receptor (D1R) pathways in the rat striatum. The impact of different doses of pridopidine on gene expression and transcript splicing in HD across relevant brain regions was explored, utilizing the YAC128 HD mouse model, which carries the entire human mHtt gene containing 128 CAG repeats. METHODS: RNAseq was analyzed from striatum, cortex, and hippocampus of wild-type and YAC128 mice treated with vehicle, 10 mg/kg or 30 mg/kg pridopidine from the presymptomatic stage (1.5 months of age) until 11.5 months of age in which mice exhibit progressive disease phenotypes. RESULTS: The most pronounced transcriptional effect of pridopidine at both doses was observed in the striatum with minimal effects in other regions. In addition, for the first time pridopidine was found to have a dose-dependent impact on alternative exon and junction usage, a regulatory mechanism known to be impaired in HD. In the striatum of YAC128 HD mice, pridopidine treatment initiation prior to symptomatic manifestation rescues the impaired expression of the BDNF, GR, D1R and cAMP pathways. CONCLUSIONS: Pridopidine has broad effects on restoring transcriptomic disturbances in the striatum, particularly involving synaptic transmission and activating neuroprotective pathways that are disturbed in HD. Benefits of treatment initiation at early disease stages track with trends observed in the clinic.


Assuntos
Expressão Gênica/efeitos dos fármacos , Doença de Huntington , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piperidinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Transmissão Sináptica/efeitos dos fármacos
6.
Biochem Pharmacol ; 152: 84-93, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29551586

RESUMO

The tremendous expansion of data analytics and public and private big datasets presents an important opportunity for pre-clinical drug discovery and development. In the field of life sciences, the growth of genetic, genomic, transcriptomic and proteomic data is partly driven by a rapid decline in experimental costs as biotechnology improves throughput, scalability, and speed. Yet far too many researchers tend to underestimate the challenges and consequences involving data integrity and quality standards. Given the effect of data integrity on scientific interpretation, these issues have significant implications during preclinical drug development. We describe standardized approaches for maximizing the utility of publicly available or privately generated biological data and address some of the common pitfalls. We also discuss the increasing interest to integrate and interpret cross-platform data. Principles outlined here should serve as a useful broad guide for existing analytical practices and pipelines and as a tool for developing additional insights into therapeutics using big data.


Assuntos
Big Data , Pesquisa Biomédica/normas , Descoberta de Drogas , Controle de Qualidade
7.
Cell Syst ; 6(1): 13-24, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29199020

RESUMO

The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability.


Assuntos
Catalogação/métodos , Biologia de Sistemas/métodos , Biologia Computacional/métodos , Bases de Dados de Compostos Químicos/normas , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , Humanos , Armazenamento e Recuperação da Informação/métodos , Programas Nacionais de Saúde , National Institutes of Health (U.S.)/normas , Transcriptoma , Estados Unidos
8.
PLoS Genet ; 13(5): e1006766, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542190

RESUMO

In nature, microbes often need to "decide" which of several available nutrients to utilize, a choice that depends on a cell's inherent preference and external nutrient levels. While natural environments can have mixtures of different nutrients, phenotypic variation in microbes' decisions of which nutrient to utilize is poorly studied. Here, we quantified differences in the concentration of glucose and galactose required to induce galactose-responsive (GAL) genes across 36 wild S. cerevisiae strains. Using bulk segregant analysis, we found that a locus containing the galactose sensor GAL3 was associated with differences in GAL signaling in eight different crosses. Using allele replacements, we confirmed that GAL3 is the major driver of GAL induction variation, and that GAL3 allelic variation alone can explain as much as 90% of the variation in GAL induction in a cross. The GAL3 variants we found modulate the diauxic lag, a selectable trait. These results suggest that ecological constraints on the galactose pathway may have led to variation in a single protein, allowing cells to quantitatively tune their response to nutrient changes in the environment.


Assuntos
Regulação Fúngica da Expressão Gênica , Polimorfismo Genético , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Galactose/metabolismo , Fenótipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
9.
Sci Rep ; 6: 25474, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27146274

RESUMO

In recent years, the assay for transposase-accessible chromatin using sequencing (ATAC-Seq) has become a fundamental tool of epigenomic research. However, it is difficult to perform this technique on frozen samples because freezing cells before extracting nuclei can impair nuclear integrity and alter chromatin structure, especially in fragile cells such as neurons. Our aim was to develop a protocol for freezing neuronal cells that is compatible with ATAC-Seq; we focused on a disease-relevant cell type, namely motor neurons differentiated from induced pluripotent stem cells (iMNs) from a patient affected by spinal muscular atrophy. We found that while flash-frozen iMNs are not suitable for ATAC-Seq, the assay is successful with slow-cooled cryopreserved cells. Using this method, we were able to isolate high quality, intact nuclei, and we verified that epigenetic results from fresh and cryopreserved iMNs quantitatively agree.


Assuntos
Núcleo Celular/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Criopreservação/métodos , Crioprotetores/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Diferenciação Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Cromatina/metabolismo , Cromatina/ultraestrutura , Epigênese Genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Cultura Primária de Células , Análise de Sequência de DNA , Transposases/química
10.
Proc Natl Acad Sci U S A ; 112(5): 1636-41, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605920

RESUMO

Natural environments are filled with multiple, often competing, signals. In contrast, biological systems are often studied in "well-controlled" environments where only a single input is varied, potentially missing important interactions between signals. Catabolite repression of galactose by glucose is one of the best-studied eukaryotic signal integration systems. In this system, it is believed that galactose metabolic (GAL) genes are induced only when glucose levels drop below a threshold. In contrast, we show that GAL gene induction occurs at a constant external galactose:glucose ratio across a wide range of sugar concentrations. We systematically perturbed the components of the canonical galactose/glucose signaling pathways and found that these components do not account for ratio sensing. Instead we provide evidence that ratio sensing occurs upstream of the canonical signaling pathway and results from the competitive binding of the two sugars to hexose transporters. We show that a mutant that behaves as the classical model expects (i.e., cannot use galactose above a glucose threshold) has a fitness disadvantage compared with wild type. A number of common biological signaling motifs can give rise to ratio sensing, typically through negative interactions between opposing signaling molecules. We therefore suspect that this previously unidentified nutrient sensing paradigm may be common and overlooked in biology.


Assuntos
Galactose/metabolismo , Glucose/metabolismo , Saccharomyces cerevisiae/genética , Meios de Cultura , Genes Fúngicos , Microscopia de Fluorescência , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
11.
PLoS Biol ; 13(1): e1002041, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25626068

RESUMO

Maximizing growth and survival in the face of a complex, time-varying environment is a common problem for single-celled organisms in the wild. When offered two different sugars as carbon sources, microorganisms first consume the preferred sugar, then undergo a transient growth delay, the "diauxic lag," while inducing genes to metabolize the less preferred sugar. This delay is commonly assumed to be an inevitable consequence of selection to maximize use of the preferred sugar. Contrary to this view, we found that many natural isolates of Saccharomyces cerevisiae display short or nonexistent diauxic lags when grown in mixtures of glucose (preferred) and galactose. These strains induce galactose utilization (GAL) genes hours before glucose exhaustion, thereby "preparing" for the transition from glucose to galactose metabolism. The extent of preparation varies across strains, and seems to be determined by the steady-state response of GAL genes to mixtures of glucose and galactose rather than by induction kinetics. Although early GAL gene induction gives strains a competitive advantage once glucose runs out, it comes at a cost while glucose is still present. Costs and benefits correlate with the degree of preparation: strains with higher expression of GAL genes prior to glucose exhaustion experience a larger upfront growth cost but also a shorter diauxic lag. Our results show that classical diauxic growth is only one extreme on a continuum of growth strategies constrained by a cost-benefit tradeoff. This type of continuum is likely to be common in nature, as similar tradeoffs can arise whenever cells evolve to use mixtures of nutrients.


Assuntos
Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/metabolismo , Metabolismo dos Carboidratos , Meios de Cultura , Metabolismo Energético , Galactose/metabolismo , Genes Fúngicos , Glucose/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ativação Transcricional
12.
Cell ; 157(7): 1712-23, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24949978

RESUMO

In addition to their annotated transcript, many eukaryotic mRNA promoters produce divergent noncoding transcripts. To define determinants of divergent promoter directionality, we used genomic replacement experiments. Sequences within noncoding transcripts specified their degradation pathways, and functional protein-coding transcripts could be produced in the divergent direction. To screen for mutants affecting the ratio of transcription in each direction, a bidirectional fluorescent protein reporter construct was introduced into the yeast nonessential gene deletion collection. We identified chromatin assembly as an important regulator of divergent transcription. Mutations in the CAF-I complex caused genome-wide derepression of nascent divergent noncoding transcription. In opposition to the CAF-I chromatin assembly pathway, H3K56 hyperacetylation, together with the nucleosome remodeler SWI/SNF, facilitated divergent transcription by promoting rapid nucleosome turnover. We propose that these chromatin-mediated effects control divergent transcription initiation, complementing downstream pathways linked to early termination and degradation of the noncoding RNAs.


Assuntos
Fator 1 de Modelagem da Cromatina/metabolismo , Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica , RNA Fúngico/genética , RNA não Traduzido/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Montagem e Desmontagem da Cromatina , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Estabilidade de RNA , RNA Fúngico/metabolismo , RNA não Traduzido/metabolismo , Terminação da Transcrição Genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...