Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 26(11): 2464-2478, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30858606

RESUMO

Mutations in TBC1D24 are described in patients with a spectrum of neurological diseases, including mild and severe epilepsies and complex syndromic phenotypes such as Deafness, Onycodystrophy, Osteodystrophy, Mental Retardation and Seizure (DOORS) syndrome. The product of TBC1D24 is a multifunctional protein involved in neuronal development, regulation of synaptic vesicle trafficking, and protection from oxidative stress. Although pathogenic mutations in TBC1D24 span the entire coding sequence, no clear genotype/phenotype correlations have emerged. However most patients bearing predicted loss of function mutations exhibit a severe neurodevelopmental disorder. Aim of the study is to investigate the impact of TBC1D24 knockdown during the first stages of neuronal differentiation when axonal specification and outgrowth take place. In rat cortical primary neurons silenced for TBC1D24, we found defects in axonal specification, the maturation of axonal initial segment and action potential firing. The axonal phenotype was accompanied by an impairment of endocytosis at the growth cone and an altered activation of the TBC1D24 molecular partner ADP ribosylation factor 6. Accordingly, acute knockdown of TBC1D24 in cerebrocortical neurons in vivo analogously impairs callosal projections. The axonal defect was also investigated in human induced pluripotent stem cell-derived neurons from patients carrying TBC1D24 mutations. Reprogrammed neurons from a patient with severe developmental encephalopathy show significant axon formation defect that were absent from reprogrammed neurons of a patient with mild early onset epilepsy. Our data reveal that alterations of membrane trafficking at the growth cone induced by TBC1D24 loss of function cause axonal and excitability defects. The axonal phenotype correlates with the disease severity and highlight an important role for TBC1D24 in connectivity during brain development.


Assuntos
Transporte Axonal/fisiologia , Axônios/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Crescimento Neuronal/fisiologia , Neurônios/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Animais , Proteínas Ativadoras de GTPase/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças do Sistema Nervoso/genética , Neurogênese/fisiologia , Estresse Oxidativo/fisiologia , Domínios Proteicos/genética , Ratos , Ratos Wistar
2.
Cereb Cortex ; 29(5): 2010-2033, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29912316

RESUMO

Mutations in PRoline-Rich Transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders including epilepsy, kinesigenic dyskinesia and migraine. Most of the mutations lead to impaired PRRT2 expression and/or function, emphasizing the pathogenic role of the PRRT2 deficiency. In this work, we investigated the phenotype of primary hippocampal neurons obtained from mouse embryos in which the PRRT2 gene was constitutively inactivated. Although PRRT2 is expressed by both excitatory and inhibitory neurons, its deletion decreases the number of excitatory synapses without significantly affecting the number of inhibitory synapses or the nerve terminal ultrastructure. Analysis of synaptic function in primary PRRT2 knockout excitatory neurons by live imaging and electrophysiology showed slowdown of the kinetics of exocytosis, weakened spontaneous and evoked synaptic transmission and markedly increased facilitation. Inhibitory neurons showed strengthening of basal synaptic transmission, accompanied by faster depression. At the network level these complex synaptic effects resulted in a state of heightened spontaneous and evoked activity that was associated with increased excitability of excitatory neurons in both PRRT2 knockout primary cultures and acute hippocampal slices. The data indicate the existence of network instability/hyperexcitability as the possible basis of the paroxysmal phenotypes associated with PRRT2 mutations.


Assuntos
Hipocampo/fisiologia , Proteínas de Membrana/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Transmissão Sináptica , Animais , Células Cultivadas , Exocitose , Masculino , Potenciais da Membrana , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/fisiologia , Sinapses/fisiologia , Sinapses/ultraestrutura
3.
Brain ; 141(4): 1000-1016, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29554219

RESUMO

See Lerche (doi:10.1093/brain/awy073) for a scientific commentary on this article.Proline-rich transmembrane protein 2 (PRRT2) is the causative gene for a heterogeneous group of familial paroxysmal neurological disorders that include seizures with onset in the first year of life (benign familial infantile seizures), paroxysmal kinesigenic dyskinesia or a combination of both. Most of the PRRT2 mutations are loss-of-function leading to haploinsufficiency and 80% of the patients carry the same frameshift mutation (c.649dupC; p.Arg217Profs*8), which leads to a premature stop codon. To model the disease and dissect the physiological role of PRRT2, we studied the phenotype of neurons differentiated from induced pluripotent stem cells from previously described heterozygous and homozygous siblings carrying the c.649dupC mutation. Single-cell patch-clamp experiments on induced pluripotent stem cell-derived neurons from homozygous patients showed increased Na+ currents that were fully rescued by expression of wild-type PRRT2. Closely similar electrophysiological features were observed in primary neurons obtained from the recently characterized PRRT2 knockout mouse. This phenotype was associated with an increased length of the axon initial segment and with markedly augmented spontaneous and evoked firing and bursting activities evaluated, at the network level, by multi-electrode array electrophysiology. Using HEK-293 cells stably expressing Nav channel subtypes, we demonstrated that the expression of PRRT2 decreases the membrane exposure and Na+ current of Nav1.2/Nav1.6, but not Nav1.1, channels. Moreover, PRRT2 directly interacted with Nav1.2/Nav1.6 channels and induced a negative shift in the voltage-dependence of inactivation and a slow-down in the recovery from inactivation. In addition, by co-immunoprecipitation assays, we showed that the PRRT2-Nav interaction also occurs in brain tissue. The study demonstrates that the lack of PRRT2 leads to a hyperactivity of voltage-dependent Na+ channels in homozygous PRRT2 knockout human and mouse neurons and that, in addition to the reported synaptic functions, PRRT2 is an important negative modulator of Nav1.2 and Nav1.6 channels. Given the predominant paroxysmal character of PRRT2-linked diseases, the disturbance in cellular excitability by lack of negative modulation of Na+ channels appears as the key pathogenetic mechanism.


Assuntos
Regulação da Expressão Gênica/genética , Proteínas de Membrana/metabolismo , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Animais , Segmento Inicial do Axônio/fisiologia , Diferenciação Celular , Córtex Cerebral/citologia , Consanguinidade , Fibroblastos/patologia , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas , Potenciais da Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Proteínas do Tecido Nervoso/genética , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Neurônios/citologia , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Irmãos
4.
J Cell Sci ; 130(8): 1435-1449, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28254883

RESUMO

Extracellular pH impacts on neuronal activity, which is in turn an important determinant of extracellular H+ concentration. The aim of this study was to describe the spatio-temporal dynamics of extracellular pH at synaptic sites during neuronal hyperexcitability. To address this issue we created ex.E2GFP, a membrane-targeted extracellular ratiometric pH indicator that is exquisitely sensitive to acidic shifts. By monitoring ex.E2GFP fluorescence in real time in primary cortical neurons, we were able to quantify pH fluctuations during network hyperexcitability induced by convulsant drugs or high-frequency electrical stimulation. Sustained hyperactivity caused a pH decrease that was reversible upon silencing of neuronal activity and located at active synapses. This acidic shift was not attributable to the outflow of synaptic vesicle H+ into the cleft nor to the activity of membrane-exposed H+ V-ATPase, but rather to the activity of the Na+/H+-exchanger. Our data demonstrate that extracellular synaptic pH shifts take place during epileptic-like activity of neural cultures, emphasizing the strict links existing between synaptic activity and synaptic pH. This evidence may contribute to the understanding of the physio-pathological mechanisms associated with hyperexcitability in the epileptic brain.


Assuntos
Córtex Cerebelar/citologia , Sinapses Elétricas/metabolismo , Epilepsia/fisiopatologia , Neurônios/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Excitabilidade Cortical , Espaço Extracelular , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Condução Nervosa
5.
Artigo em Inglês | MEDLINE | ID: mdl-27242505

RESUMO

The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions. The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin (CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission.

6.
Cell Rep ; 15(1): 117-131, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27052163

RESUMO

Heterozygous mutations in proline-rich transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders, including epilepsy, kinesigenic dyskinesia, and migraine. Most of the mutations lead to impaired PRRT2 expression, suggesting that loss of PRRT2 function may contribute to pathogenesis. We show that PRRT2 is enriched in presynaptic terminals and that its silencing decreases the number of synapses and increases the number of docked synaptic vesicles at rest. PRRT2-silenced neurons exhibit a severe impairment of synchronous release, attributable to a sharp decrease in release probability and Ca(2+) sensitivity and associated with a marked increase of the asynchronous/synchronous release ratio. PRRT2 interacts with the synaptic proteins SNAP-25 and synaptotagmin 1/2. The results indicate that PRRT2 is intimately connected with the Ca(2+)-sensing machinery and that it plays an important role in the final steps of neurotransmitter release.


Assuntos
Sinalização do Cálcio , Exocitose , Proteínas de Membrana/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Sprague-Dawley , Potenciais Sinápticos , Vesículas Sinápticas/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagminas/metabolismo
7.
Elife ; 52016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26731518

RESUMO

Recycling of synaptic vesicles (SVs) is a fundamental step in the process of neurotransmission. Endocytosed SV can travel directly into the recycling pool or recycle through endosomes but little is known about the molecular actors regulating the switch between these SV recycling routes. ADP ribosylation factor 6 (Arf6) is a small GTPase known to participate in constitutive trafficking between plasma membrane and early endosomes. Here, we have morphologically and functionally investigated Arf6-silenced hippocampal synapses and found an activity dependent accumulation of synaptic endosome-like organelles and increased release-competent docked SVs. These features were phenocopied by pharmacological blockage of Arf6 activation. The data reveal an unexpected role for this small GTPase in reducing the size of the readily releasable pool of SVs and in channeling retrieved SVs toward direct recycling rather than endosomal sorting. We propose that Arf6 acts at the presynapse to define the fate of an endocytosed SV.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Hipocampo/fisiologia , Sinapses/fisiologia , Vesículas Sinápticas/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/antagonistas & inibidores , Fatores de Ribosilação do ADP/genética , Animais , Inativação Gênica , Ratos Sprague-Dawley
8.
Proc Natl Acad Sci U S A ; 111(6): 2337-42, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24469796

RESUMO

Alterations in the formation of brain networks are associated with several neurodevelopmental disorders. Mutations in TBC1 domain family member 24 (TBC1D24) are responsible for syndromes that combine cortical malformations, intellectual disability, and epilepsy, but the function of TBC1D24 in the brain remains unknown. We report here that in utero TBC1D24 knockdown in the rat developing neocortex affects the multipolar-bipolar transition of neurons leading to delayed radial migration. Furthermore, we find that TBC1D24-knockdown neurons display an abnormal maturation and retain immature morphofunctional properties. TBC1D24 interacts with ADP ribosylation factor (ARF)6, a small GTPase crucial for membrane trafficking. We show that in vivo, overexpression of the dominant-negative form of ARF6 rescues the neuronal migration and dendritic outgrowth defects induced by TBC1D24 knockdown, suggesting that TBC1D24 prevents ARF6 activation. Overall, our findings demonstrate an essential role of TBC1D24 in neuronal migration and maturation and highlight the physiological relevance of the ARF6-dependent membrane-trafficking pathway in brain development.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Proteínas de Transporte/fisiologia , Movimento Celular/fisiologia , Neurônios/citologia , Fator 6 de Ribosilação do ADP , Animais , Encéfalo/fisiologia , Proteínas de Transporte/genética , Células Cultivadas , Dendritos/fisiologia , Proteínas Ativadoras de GTPase , Técnicas de Silenciamento de Genes , Ácido Glutâmico/metabolismo , Proteínas de Membrana , Proteínas do Tecido Nervoso , Ratos , Sinapses/metabolismo
9.
Hum Mol Genet ; 23(1): 90-103, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23956174

RESUMO

An increasing number of genes predisposing to autism spectrum disorders (ASDs) has been identified, many of which are implicated in synaptic function. This 'synaptic autism pathway' notably includes disruption of SYN1 that is associated with epilepsy, autism and abnormal behavior in both human and mice models. Synapsins constitute a multigene family of neuron-specific phosphoproteins (SYN1-3) present in the majority of synapses where they are implicated in the regulation of neurotransmitter release and synaptogenesis. Synapsins I and II, the major Syn isoforms in the adult brain, display partially overlapping functions and defects in both isoforms are associated with epilepsy and autistic-like behavior in mice. In this study, we show that nonsense (A94fs199X) and missense (Y236S and G464R) mutations in SYN2 are associated with ASD in humans. The phenotype is apparent in males. Female carriers of SYN2 mutations are unaffected, suggesting that SYN2 is another example of autosomal sex-limited expression in ASD. When expressed in SYN2  knockout neurons, wild-type human Syn II fully rescues the SYN2 knockout phenotype, whereas the nonsense mutant is not expressed and the missense mutants are virtually unable to modify the SYN2 knockout phenotype. These results identify for the first time SYN2  as a novel predisposing gene for ASD and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies ASD.


Assuntos
Axônios/metabolismo , Axônios/patologia , Transtornos Globais do Desenvolvimento Infantil/genética , Sinapsinas/genética , Vesículas Sinápticas/patologia , Animais , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Códon sem Sentido , Feminino , Predisposição Genética para Doença , Células HeLa , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação de Sentido Incorreto , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo
10.
J Neurosci ; 31(49): 18149-54, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159126

RESUMO

Sustained neurotransmitter release at synapses during high-frequency synaptic activity involves the mobilization of synaptic vesicles (SVs) from the tightly clustered reserve pool (RP). Synapsin I (Syn I), a brain-specific peripheral membrane protein that undergoes activity-dependent cycles of SV association and dissociation, is implicated in RP organization via its ability to cluster SVs. Although Syn I has affinity for phospholipids, the mechanism for the reversible association of synapsin with SV membranes remains enigmatic. Here, we show that rat Syn I is able to sense membrane curvature via an evolutionary conserved amphipathic lipid packing sensor motif (ALPS). Deletion or mutational inactivation of the ALPS impairs the ability of Syn I to associate with highly curved membranes and with SVs. Furthermore, a Syn I mutant lacking ALPS displays defects in its ability to undergo activity-induced cycles of dispersion and reclustering in neurons and fails to induce vesicle clustering in vitro. Our data suggest a crucial role for ALPS-mediated sensing of membrane curvature in regulating synapsin function.


Assuntos
Metabolismo dos Lipídeos , Lipídeos/química , Lipossomos/metabolismo , Neurônios/citologia , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Linhagem Celular Transformada , Embrião de Mamíferos , Feminino , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Humanos , Masculino , Membranas Artificiais , Camundongos , Estrutura Terciária de Proteína/genética , Sinapsinas/genética , Vesículas Sinápticas/genética , Transfecção/métodos
11.
Hum Mol Genet ; 20(12): 2297-307, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21441247

RESUMO

Several genes predisposing to autism spectrum disorders (ASDs) with or without epilepsy have been identified, many of which are implicated in synaptic function. Here we report a Q555X mutation in synapsin 1 (SYN1), an X-linked gene encoding for a neuron-specific phosphoprotein implicated in the regulation of neurotransmitter release and synaptogenesis. This nonsense mutation was found in all affected individuals from a large French-Canadian family segregating epilepsy and ASDs. Additional mutations in SYN1 (A51G, A550T and T567A) were found in 1.0 and 3.5% of French-Canadian individuals with autism and epilepsy, respectively. The majority of these SYN1 mutations were clustered in the proline-rich D-domain which is substrate of multiple protein kinases. When expressed in synapsin I (SynI) knockout (KO) neurons, all the D-domain mutants failed in rescuing the impairment in the size and trafficking of synaptic vesicle pools, whereas the wild-type human SynI fully reverted the KO phenotype. Moreover, the nonsense Q555X mutation had a dramatic impact on phosphorylation by MAPK/Erk and neurite outgrowth, whereas the missense A550T and T567A mutants displayed impaired targeting to nerve terminals. These results demonstrate that SYN1 is a novel predisposing gene to ASDs, in addition to epilepsy, and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies the pathogenesis of both diseases.


Assuntos
Transtorno Autístico/genética , Códon sem Sentido/genética , Epilepsias Parciais/genética , Sinapses/patologia , Sinapsinas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Técnicas de Inativação de Genes , Humanos , Immunoblotting , Escore Lod , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Neurônios/metabolismo , Linhagem , Fosforilação , Quebeque , Análise de Sequência de DNA , Sinapses/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...