Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 3125, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449590

RESUMO

Atomic force microscopy is used to conduct single-asperity friction measurements at a water-graphite interface. Local mapping of the frictional force, which is based on the degree of the cantilever twisting, shows nearly friction-free when a tip scans over a nanobubble. Surprisingly, apart from being gapless, the associated friction loop exhibits a tilt in the cantilever twisting versus the tip's lateral displacement with the slope depending on the loading force. The sign of the slope reverses at around zero loading force. In addition, the measured normal and lateral tip-sample interactions exhibit unison versus tip-sample separation. Theoretical analysis, based on the balance of forces on the tip originated from the capillary force of the nanobubble and the torsion of the cantilever, offers quantitative explanations for both the tilted friction loop and the unison of force curves. The analysis may well apply in a wider context to the lateral force characterization on cap-shaped fluid structures such as liquid droplets on a solid substrate. This study further points to a new direction for friction reduction between solids in a liquid medium.

2.
Langmuir ; 32(43): 11164-11171, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27308947

RESUMO

The contact of water with graphene is of fundamental importance and of great interest for numerous promising applications, but how graphene interacts with water remains unclear. Here we used atomic force microscopy (AFM) to investigate hydrophilic mica substrates with some regions covered by mechanically exfoliated graphene layers in water. In water containing air gas close to the saturation concentration (within ∼40%), cap-shaped nanostructures (or interfacial nanobubbles) and ordered-stripe domains were observed on graphene-covered regions but not on pure mica regions. These structures did not appear on graphene when samples were immersed in highly degassed water, indicating that their formation was caused by the adsorption of gas dissolved in water. Thus, atomically thin graphene, even at a narrow width of 20 nm, changes the local surface chemistry of a highly hydrophilic substrate. Furthermore, surface hydrophobicity significantly affects gas adsorption, which has broad implications for diverse phenomena in water.

3.
Sci Rep ; 6: 24651, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27090291

RESUMO

Experimental investigations of hydrophobic/water interfaces often return controversial results, possibly due to the unknown role of gas accumulation at the interfaces. Here, during advanced atomic force microscopy of the initial evolution of gas-containing structures at a highly ordered pyrolytic graphite/water interface, a fluid phase first appeared as a circular wetting layer ~0.3 nm in thickness and was later transformed into a cap-shaped nanostructure (an interfacial nanobubble). Two-dimensional ordered domains were nucleated and grew over time outside or at the perimeter of the fluid regions, eventually confining growth of the fluid regions to the vertical direction. We determined that interfacial nanobubbles and fluid layers have very similar mechanical properties, suggesting low interfacial tension with water and a liquid-like nature, explaining their high stability and their roles in boundary slip and bubble nucleation. These ordered domains may be the interfacial hydrophilic gas hydrates and/or the long-sought chemical surface heterogeneities responsible for contact line pinning and contact angle hysteresis. The gradual nucleation and growth of hydrophilic ordered domains renders the original homogeneous hydrophobic/water interface more heterogeneous over time, which would have great consequence for interfacial properties that affect diverse phenomena, including interactions in water, chemical reactions, and the self-assembly and function of biological molecules.

4.
Sci Rep ; 4: 7189, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25424443

RESUMO

The thermodynamic properties of gases have been understood primarily through phase diagrams of bulk gases. However, observations of gases confined in a nanometer space have posed a challenge to the principles of classical thermodynamics. Here, we investigated interfacial structures comprising either O2 or N2 between water and a hydrophobic solid surface by using advanced atomic force microscopy techniques. Ordered epitaxial layers and cap-shaped nanostructures were observed. In addition, pancake-shaped disordered layers that had grown on top of the epitaxial base layers were observed in oxygen-supersaturated water. We propose that hydrophobic solid surfaces provide low-chemical-potential sites at which gas molecules dissolved in water can be adsorbed. The structures are further stabilized by interfacial water. Here we show that gas molecules can agglomerate into a condensed form when confined in a sufficiently small space under ambient conditions. The crystalline solid surface may even induce a solid-gas state when the gas-substrate interaction is significantly stronger than the gas-gas interaction. The ordering and thermodynamic properties of the confined gases are determined primarily according to interfacial interactions.

5.
Phys Rev Lett ; 103(26): 266103, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20366324

RESUMO

We present dynamic force-microscopy experiments and first-principles simulations that contribute to clarify the origin of atomic-scale contrast in Kelvin-probe force-microscopy (KPFM) images of semiconductor surfaces. By combining KPFM and bias-spectroscopy imaging with force and bias-distance spectroscopy, we show a significant drop of the local contact potential difference (LCPD) that correlates with the development of the tip-surface interatomic forces over distinct atomic positions. We suggest that variations of this drop in the LCPD over the different atomic sites are responsible for the atomic contrast in both KPFM and bias-spectroscopy imaging. Our simulations point towards a relation of this drop in the LCPD to variations of the surface local electronic structure due to a charge polarization induced by the tip-surface interatomic interaction.

6.
Phys Rev Lett ; 94(4): 045505, 2005 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-15783571

RESUMO

We have observed interesting H-atom adsorption induced atomic rearrangements of a Pb monolayer on the Si(111) with a scanning tunneling microscope. A hexagonal ringlike pattern is formed around the point defect. The interactions among nearby H-adsorbed defects can even produce interferencelike superstructures. Phase boundaries are found to either enhance or suppress the formation of the interference pattern. These phenomena are produced by an intricate interplay between electronic and atomic interactions as perturbed by the adsorbed hydrogen atoms.

7.
Phys Rev Lett ; 93(10): 106101, 2004 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-15447421

RESUMO

We study a reversible, temperature-driven structural surface phase transition of Pb/Si(111) nanoislands with a variable-temperature scanning tunneling microscope. Our quantitative measurements indicate that the transition temperature decreases with decreasing island and domain size. The boundaries of the nanoislands also influence the transition. Careful examination of the change in the interior structure of nanoislands near the transition temperature allows us to image the effects of the thermal fluctuations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA