Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758966

RESUMO

Apiculate yeasts belonging to the genus Hanseniaspora are predominant on grapes and other fruits. While some species, such as Hanseniaspora uvarum, are well known for their abundant presence in fruits, they are generally characterized by their detrimental effect on fermentation quality because the excessive production of acetic acid. However, the species Hanseniaspora vineae is adapted to fermentation and currently is considered as an enhancer of positive flavour and sensory complexity in foods. Since 2002, we have been isolating strains from this species and conducting winemaking processes with them. In parallel, we also characterized this species from genes to metabolites. In 2013, we sequenced the genomes of two H. vineae strains, being these the first apiculate yeast genomes determined. In the last 10 years, it has become possible to understand its biology, discovering very peculiar features compared to the conventional Saccharomyces yeasts, such as a natural and unique G2 cell cycle arrest or the elucidation of the mandelate pathway for benzenoids synthesis. All these characteristics contribute to phenotypes with proved interest from the biotechnological point of view for winemaking and the production of other foods.


Assuntos
Hanseniaspora , Vinho , Hanseniaspora/genética , Fermentação , Vinho/análise , Leveduras/genética , Biologia
2.
J Sci Food Agric ; 102(14): 6780-6785, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35942662

RESUMO

BACKGROUND: Animal odor, is one of the most common aroma defects described in the honey odor aroma wheel. It comprises two secondary descriptors: 'fecal' and 'cowshed'. However, the compounds responsible for these honey defects have not been fully identified. In this context, the aim of this work was to identify the compounds responsible for the aromatic defect 'fecal' in Uruguayan honeys by means of gas chromatography coupled to olfactometry (GC-O). RESULTS: Samples of honey described by beekeepers as having fecal aroma were analyzed by GC-O and gas chromatography coupled to mass spectrometry (GC-MS). Through GC-O, it was possible to establish the region of the chromatogram corresponding to the fecal descriptor, while the GC-MS analysis allowed to identify indole as the compound responsible for the fecal descriptor. The content of indole in the analyzed samples ranged between 132 and 414 µg kg-1 . The melissopalynological analysis indicated the presence of Scutia buxifolia ('quebracho' or 'coronilla') pollen in all samples studied. The volatile profile of Scutia buxifolia flowers was evaluated during the full day, enabling the identification of indole as one of its components. The detection threshold value for indole in honey was experimentally determined as 64 µg kg-1 of honey, a value lower than the concentration found in the evaluated samples. CONCLUSION: Results from the study allowed the identification of indole as the compound responsible for the 'fecal' aroma defect in Scutia buxifolia honeys. © 2022 Society of Chemical Industry.


Assuntos
Mel , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Mel/análise , Indóis , Odorantes/análise , Olfatometria/métodos , Compostos Orgânicos Voláteis/química
3.
Food Sci Nutr ; 9(7): 3673-3682, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34262726

RESUMO

Physicochemical characterization, amino acids contents, minerals composition, total phenolic compounds, and antioxidant capacity of Cuban wines from different raw materials were studied. The wines studied were grape wines, tropical fruit wines, and rice wines. Twenty-one amino acids were identified and quantified, being Asp and Glu detected in all wines. The highest concentration of total amino acid content was found in wines elaborated from Cimarrona grape subjected to maceration with grape skins, while the raisined mixture grape wine presented the lowest values, probably caused by the amino acid degradation during the dehydration process by sun exposure. Minerals quantified were range amount limits of acceptable according to the OIV recommendation. Total phenolic compounds and antioxidant capacity showed the greatest values in wine from roasting rice. No statistical separation could be clearly observed by multivariate principal component analysis; however, 3 wine groups could be defined taking account the scores on the PC1.

4.
Food Sci Technol Int ; 26(6): 512-519, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32151167

RESUMO

Chemical and sensory properties of Torrontés Riojano sparkling wines, prepared using second fermentation with Saccharomyces strains EC1118, bayanus C12 and IFI473I, were explored. All sparkling wines showed high levels of several volatile ethyl esters and terpenes associated to fruity and floral aromas. The sensory profiles showed significant differences for the floral aroma descriptor among EC1118, bayanus C12 and IFI473I and for bubble persistence for strain bayanus C12. Our results suggest that the sensory properties of these sparkling wines could be dependent on the chemical and organoleptic properties of the base wine more than the yeast strain used for second fermentation.


Assuntos
Fermentação , Odorantes/análise , Saccharomyces/classificação , Saccharomyces/metabolismo , Vinho/análise , Manipulação de Alimentos , Frutas/química , Saccharomyces cerevisiae , Sensação , Paladar , Percepção Gustatória , Vitis/química , Vitis/classificação
5.
Chem Biodivers ; 16(5): e1800442, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30725525

RESUMO

Propolis samples from north-west Argentina (Amaicha del Valle, Tucumán) were evaluated by palynology, FT-IR spectra, and RP-HPTLC. In addition, the volatile fraction was studied by HS-SPME-GC/MS. The botanical species most visited by Apis mellifera L. near the apiaries were collected and their RP-HPTLC extracts profiles were compared with propolis samples. In addition, GC/MS was performed for volatile compounds from Zuccagnia punctata Cav. (Fabaceae). FT-IR spectra and RP-HPTLC fingerprints of propolis samples showed similar profiles. In RP-HPTLC analyses, only Z. punctata presented a similar fingerprint to Amaicha propolis. The major volatile compounds present in both were trans-linalool oxide (furanoid), 6-camphenone, linalool, trans-pinocarveol, p-cymen-8-ol, and 2,3,6-trimethylbenzaldehyde. Potential variations for the Amaicha del Valle propolis volatile fraction as consequence of propolis sample preparation were demonstrated.


Assuntos
Compostos Fitoquímicos/química , Própole/química , Argentina , Cromatografia Líquida de Alta Pressão , Fabaceae/química , Fabaceae/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Microscopia , Óleos Voláteis/química , Compostos Fitoquímicos/isolamento & purificação , Folhas de Planta/química , Folhas de Planta/metabolismo , Análise de Componente Principal , Própole/isolamento & purificação , Microextração em Fase Sólida , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
6.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366992

RESUMO

Hanseniaspora is the main genus of the apiculate yeast group that represents approximately 70% of the grape-associated microflora. Hanseniaspora vineae is emerging as a promising species for quality wine production compared to other non-Saccharomyces species. Wines produced by H. vineae with Saccharomyces cerevisiae consistently exhibit more intense fruity flavors and complexity than wines produced by S. cerevisiae alone. In this work, genome sequencing, assembling, and phylogenetic analysis of two strains of H. vineae showed that it is a member of the Saccharomyces complex and it diverged before the whole-genome duplication (WGD) event from this clade. Specific flavor gene duplications and absences were identified in the H. vineae genome compared to 14 fully sequenced industrial S. cerevisiae genomes. The increased formation of 2-phenylethyl acetate and phenylpropanoids such as 2-phenylethyl and benzyl alcohols might be explained by gene duplications of H. vineae aromatic amino acid aminotransferases (ARO8 and ARO9) and phenylpyruvate decarboxylases (ARO10). Transcriptome and aroma profiles under fermentation conditions confirmed these genes were highly expressed at the beginning of stationary phase coupled to the production of their related compounds. The extremely high level of acetate esters produced by H. vineae compared to that by S. cerevisiae is consistent with the identification of six novel proteins with alcohol acetyltransferase (AATase) domains. The absence of the branched-chain amino acid transaminases (BAT2) and acyl coenzyme A (acyl-CoA)/ethanol O-acyltransferases (EEB1) genes correlates with H. vineae's reduced production of branched-chain higher alcohols, fatty acids, and ethyl esters, respectively. Our study provides sustenance for understanding and potentially utilizing genes that determine fermentation aromas.IMPORTANCE The huge diversity of non-Saccharomyces yeasts in grapes is dominated by the apiculate genus Hanseniaspora Two native strains of Hanseniaspora vineae applied to winemaking because of their high oenological potential in aroma and fermentation performance were selected to obtain high-quality genomes. Here, we present a phylogenetic analysis and the complete transcriptome and aroma metabolome of H. vineae during three fermentation steps. This species produced significantly richer flavor compound diversity than Saccharomyces, including benzenoids, phenylpropanoids, and acetate-derived compounds. The identification of six proteins, different from S. cerevisiae ATF, with diverse acetyltransferase domains in H. vineae offers a relevant source of native genetic variants for this enzymatic activity. The discovery of benzenoid synthesis capacity in H. vineae provides a new eukaryotic model to dilucidate an alternative pathway to that catalyzed by plants' phenylalanine lyases.


Assuntos
Genoma Fúngico , Hanseniaspora/genética , Paladar , Transcriptoma , Vinho/análise , Fermentação , Hanseniaspora/metabolismo
7.
Chem Biodivers ; 15(5): e1800017, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29537727

RESUMO

Chemical bioprospecting is an important tool for generating knowledge regarding local human-threatened floras and for conservation management. For Baccharis L. (Asteraceae), several volatile components have been reported for Brazil, Argentina, Bolivia, and Chile as a result of bioprospection, but not for Uruguayan flora, which is composed of more than 50 native species. In this work, through collection of aerial parts of different species and volatile simultaneous-distillation extraction and gas chromatography-mass spectrometry analyses, twelve native species of Baccharis were studied (B. articulata, B. cultrata, B. genistifolia, B. gibertii, B. gnaphalioides, B. ochracea, B. phyteumoides, B. punctulata, B. crispa, B. dracunculifolia, B. linearifolia subsp. linearifolia, and B. spicata). A detailed analysis of the male and female volatile composition was conducted for the last four species. The profiles of B. cultrata, B. genistifolia, B. gibertii, and B. gnaphalioides are reported for the first time. Because half of the species analyzed in this work are in Uruguay and are threatened or potentially threatened by human economic activities, the importance of their conservation as natural, sustainable resources is highlighted.


Assuntos
Baccharis/química , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Componentes Aéreos da Planta/química , Especificidade da Espécie , Uruguai
8.
Int J Food Microbiol ; 241: 161-167, 2017 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-27783969

RESUMO

A pineapple vinification process was conducted through inoculated and spontaneous fermentation to develop a process suitable for a quality beverage during two successive vintages in Huambo, Angola. Wines obtained with the conventional Saccharomyces cerevisiae strain, were analysed by gas chromatography, and a total of 61 volatile constituents were detected in the volatile fraction and 18 as glycosidically bound aroma compounds. Concentration levels of carbonyl and sulphur compounds were in agreement with the limited information reported about pineapple fruits of other regions. We report, for the first time in pineapple wines, the presence of significant concentrations of lactones, ketones, terpenes, norisoprenoids and a variety of volatile phenols. Eight native yeast strains were isolated from spontaneous batches. Further single-strain fermentations allowed us to characterise their suitability for commercial fermentation. Three native strains (Hanseniaspora opuntiae, H. uvarum and Meyerozyma guilliermondii) were selected with sensory potential to ferment pineapple fruits with increased flavour diversity. Results obtained here contribute to a better understanding of quality fermentation alternatives of this tropical fruit in subtropical regions.


Assuntos
Ananas/metabolismo , Hanseniaspora/metabolismo , Saccharomyces cerevisiae/metabolismo , Compostos Orgânicos Voláteis/análise , Vinho/análise , Angola , Bebidas/análise , Fermentação , Aromatizantes/análise , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Hanseniaspora/classificação , Cetonas/análise , Lactonas/análise , Norisoprenoides/análise , Odorantes/análise , Fenóis/análise , Paladar , Terpenos/análise
9.
J Agric Food Chem ; 64(22): 4574-83, 2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27193819

RESUMO

Benzyl alcohol and other benzenoid-derived metabolites of particular importance in plants confer floral and fruity flavors to wines. Among the volatile aroma components in Vitis vinifera grape varieties, benzyl alcohol is present in its free and glycosylated forms. These compounds are considered to originate from grapes only and not from fermentative processes. We have found increased levels of benzyl alcohol in red Tannat wine compared to that in grape juice, suggesting de novo formation of this metabolite during vinification. In this work, we show that benzyl alcohol, benzaldehyde, p-hydroxybenzaldehyde, and p-hydroxybenzyl alcohol are synthesized de novo in the absence of grape-derived precursors by Hanseniaspora vineae. Levels of benzyl alcohol produced by 11 different H. vineae strains were 20-200 times higher than those measured in fermentations with Saccharomyces cerevisiae strains. These results show that H. vineae contributes to flavor diversity by increasing grape variety aroma concentration in a chemically defined medium. Feeding experiments with phenylalanine, tryptophan, tyrosine, p-aminobenzoic acid, and ammonium in an artificial medium were tested to evaluate the effect of these compounds either as precursors or as potential pathway regulators for the formation of benzenoid-derived aromas. Genomic analysis shows that the phenylalanine ammonia-lyase (PAL) and tyrosine ammonia lyase (TAL) pathways, used by plants to generate benzyl alcohols from aromatic amino acids, are absent in the H. vineae genome. Consequently, alternative pathways derived from chorismate with mandelate as an intermediate are discussed.


Assuntos
Benzaldeídos/metabolismo , Álcoois Benzílicos/metabolismo , Aromatizantes/metabolismo , Hanseniaspora/metabolismo , Vitis/microbiologia , Vinho/análise , Benzaldeídos/análise , Álcoois Benzílicos/análise , Fermentação , Aromatizantes/análise , Hanseniaspora/genética , Vitis/metabolismo
10.
Yeast ; 33(7): 339-43, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26888345

RESUMO

During fermentation, Saccharomyces cerevisiae releases into the medium secondary metabolic products, such as acetaldehyde, able to react with anthocyanins, producing more stable derived pigments. However, very limited reports are found about non-Saccharomyces effects on grape fermentation. In this study, six non-Saccharomyces yeast strains, belonging to the genera Metschnikowia and Hanseniaspora, were screened for their effect on red wine colour and wine-making capacity under pure culture conditions and mixed with Saccharomyces. An artificial red grape must was prepared, containing a phenolic extract of Tannat grapes that allows monitoring changes of key phenol parameters during fermentation, but without skin solids in the medium. When fermented in pure cultures, S. cerevisiae produced higher concentrations of acetaldehyde and vitisin B (acetaldehyde reaction-dependent) compared to M. pulcherrima M00/09G, Hanseniaspora guillermondii T06/09G, H. opuntiae T06/01G, H. vineae T02/05F and H. clermontiae (A10/82Fand C10/54F). However, co-fermentation of H. vineae and H. clermontiae with S. cerevisiae resulted in a significantly higher concentration of acetaldehyde compared with the pure S. cerevisiae control. HPLC-DAD-MS analysis confirmed an increased formation of vitisin B in co-fermentation treatments when compared to pure Saccharomyces fermentation, suggesting the key role of acetaldehyde. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Acetaldeído/metabolismo , Antocianinas/metabolismo , Fermentação , Saccharomyces cerevisiae/metabolismo , Vinho , Cromatografia Líquida de Alta Pressão , Técnicas de Cocultura , Cor , Espectrometria de Massas , Saccharomycetales/metabolismo
11.
J Sep Sci ; 38(17): 3038-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26140379

RESUMO

The Baccharis genus has more than 400 species of aromatic plants. However, only approximately 50 species have been studied in oil composition to date. From these studies, very few take into consideration differences between male and female plants, which is a significant and distinctive factor in Baccharis in the Asteraceae family. Baccharis articulata is a common shrub that grows wild in south Brazil, northern and central Argentina, Bolivia, Paraguay and Uruguay. It is considered to be a medicinal plant and is employed in traditional medicine. We report B. articulata male and female volatile composition obtained by simultaneous distillation-extraction technique and analyzed by gas chromatography with mass spectrometry. Also, an assessment of aromatic differences between volatile extracts was evaluated by gas chromatography with olfactometry. The results show a very similar chemical composition between male and female extracts, with a high proportion of terpene compounds of which ß-pinene, limonene and germacrene D are the main components. Despite the chemical similarity, great differences in aromatic profile were found: male plant samples exhibited the strongest odorants in number and intensity of aromatic attributes. These differences explain field observations which indicate differences between male and female flower aroma, and might be of ecological significance in the attraction of pollinating insects.


Assuntos
Baccharis/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Olfatometria/métodos , Extratos Vegetais/análise , Baccharis/fisiologia , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/análise , Cromatografia em Camada Fina , Cicloexenos/análise , Destilação , Limoneno , Monoterpenos/análise , Odorantes/análise , Óleos Voláteis/análise , Plantas Medicinais/química , Plantas Medicinais/fisiologia , Sesquiterpenos de Germacrano/análise , Temperatura , Terpenos/análise , Compostos Orgânicos Voláteis/análise
12.
Food Chem ; 143: 185-91, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24054229

RESUMO

A major fraction of monoterpenes and norisoprenoids in young wines is conjugated to sugars representing a significant reservoir of aromatic precursors. To promote their release, ß-glucosidase, α-arabinosidase, and α-rhamnosidase from a commercial Aspergillus niger preparation, were immobilized onto acrylic beads. The aim of this work was the development and application of an immobilized biocatalyst, due to the well-known advantages over soluble enzyme preparations: control of the reaction progress and preparation of enzyme-free products. In addition, the obtained derivative showed increased stability in simile wine conditions. After the treatment of Muscat wine with the biocatalyst for 20days, free monoterpenes increased significantly (from 1119 to 2132µg/L, p<0.01) with respect to the control wine. Geraniol was increased 3,4-fold over its flavor thresholds, and accordingly its impact on sensorial properties was very relevant: nine of ten judges considered treated wine more intense in fruit and floral notes.


Assuntos
Aspergillus niger/enzimologia , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Vinho/análise , Enzimas Imobilizadas/metabolismo , Humanos , Monoterpenos/análise , Monoterpenos/metabolismo , Norisoprenoides/análise , Norisoprenoides/metabolismo , Odorantes/análise , Paladar
13.
Food Chem ; 134(2): 933-9, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23107710

RESUMO

Although redox state is a well-known key process parameter in microbial activity, its impact on wine volatile aroma compounds produced during fermentation has not been studied in detail. In this study we report the effect of reductive and microaerobic conditions on wine aroma compound production using different initial amounts of yeast assimilable nitrogen (YAN: 180 and 400 mg N/l) in a simil grape must defined medium and two S. cerevisiae strains commonly used in wine-making. In batch fermentation culture conditions, reductive conditions were obtained using flasks plugged with Muller valves filled with sulphuric acid; while microaerobic conditions were attained with defined cotton plugs. It was found that significant differences in redox potential were obtained using the different plugs, and with variation of over 100 mV during the main fermentation period. Significant differences in the final concentration of higher alcohols, esters and fatty acids were attributed to differences in the redox state in the medium in both strains. A consistent increase in esters and medium chain fatty acids, as well as a decrease of higher alcohols and isoacids, was seen under reductive fermentation conditions. Interestingly, 1-propanol, δ-butyrolactone and ethyl lactate concentrations, showed no significant variation under the different redox conditions. A better understanding of the influence of redox state of the fermentation medium on the composition of volatile compounds in wine could enable improvement of vinification management. From a microbiological standpoint results presented here will contribute to the standardization of data models for the application of metabolic footprinting methods for wine yeast strain phenotyping and characterization.


Assuntos
Saccharomyces cerevisiae/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Vinho/análise , Ésteres/análise , Ésteres/metabolismo , Etanol/análise , Etanol/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Fermentação , Odorantes/análise , Oxirredução , Vitis/metabolismo , Vitis/microbiologia , Compostos Orgânicos Voláteis/análise , Vinho/microbiologia
14.
Int J Food Microbiol ; 143(1-2): 81-5, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20692063

RESUMO

Different commercial Saccharomyces cerevisiae strains have been applied at the winemaking level, trying to establish a dominant population of selected strains from the start of fermentation and ensuring the complete consumption of sugars. Although a large population of active yeast cells can be introduced in the inoculated wines, resulting in a complete fermentation, this does not necessarily mean an improvement of the sensory characteristics of the wines. The impact of the size of the inocula in wine quality parameters has been very little studied, and in no case the nutrient balance of the grape must utilized was taken into account. In this work we present results obtained for wine aroma compounds at three inoculum levels (10(4), 10(5) and 10(6)cells/mL), and two different yeast assimilable nitrogen (YAN) in a white grape must, using two S. cerevisiae strains commonly used for winemaking. A significant effect in the final concentrations of higher alcohols, esters, fatty acids, free monoterpenes and lactones was attributed to the size of inoculum in both strains but not in an easily predictable way. However, a consistent increase of desired aroma compounds (esters, lactones and free monoterpenes), and a decrease of less desired compounds for white wine (higher alcohols and medium chain fatty acids), was shown at inoculum sizes of 10(5)cells/mL for both strains in real winemaking conditions. In a discriminant analysis six aroma compounds discriminate the three inoculum sizes for all wine samples: 1,8-terpine, hodiol I (trans-3,7-dimethyl-1,5-octadiene-3,7-diol), isobutyl alcohol, iso C4 acid, ethyl C6 ester and C8 acid.


Assuntos
Tecnologia de Alimentos , Saccharomyces cerevisiae/metabolismo , Compostos Orgânicos Voláteis/análise , Vinho/análise , Contagem de Colônia Microbiana , Fermentação , Frutas , Nitrogênio/metabolismo , Odorantes , Vitis , Vinho/microbiologia
15.
J Agric Food Chem ; 57(14): 6271-8, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19548685

RESUMO

During malolactic fermentation (MLF), lactic acid bacteria influence aroma and flavor of wines by the production of volatile metabolites and the modification of aroma compounds derived from grapes and yeasts. In an effort to isolate these bacteria properties as advantages for winemaking, this study aimed to assess the relative contribution of two aspects: the effects of lactic acid bacteria activity on the volatiles compounds in Tannat wines and the consequences of aging in bottle on aroma compounds produced during MLF. To our knowledge, this is the first report related to the effect of wine aging in bottle on the aroma chemical compounds produced by MLF. Solid phase extraction complemented with chromatographic techniques was used to study the wine aroma compounds. A sensory evaluation of the wines was also performed through descriptive methods. We demonstrated modifications in the concentration of acetates, ethyl esters, and other secondary metabolites during MLF. Major sensorial differences between wines that had undergone MLF were also noted. In addition, some modifications detected in the composition of Tannat wines as a consequence of the aging in bottle contributed to the change in differences between wines with and without MLF and furthermore between strains. These changes probably influence its fruity character.


Assuntos
Fermentação , Bactérias Gram-Positivas/metabolismo , Ácido Láctico/metabolismo , Malatos/metabolismo , Odorantes/análise , Vinho/microbiologia , Cromatografia Gasosa , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Olfato , Especificidade da Espécie , Fatores de Tempo , Volatilização , Vinho/análise
16.
FEMS Yeast Res ; 8(7): 1196-207, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18637137

RESUMO

The contribution of yeast fermentation metabolites to the aromatic profile of wine is well documented; however, the biotechnological application of this knowledge, apart from strain selection, is still rather limited and often contradictory. Understanding and modeling the relationship between nutrient availability and the production of desirable aroma compounds by different strains must be one of the main objectives in the selection of industrial yeasts for the beverage and food industry. In order to overcome the variability in the composition of grape juices, we have used a chemically defined model medium for studying yeast physiological behavior and metabolite production in response to nitrogen supplementation so as to identify an appropriate yeast assimilable nitrogen level for strain differentiation. At low initial nitrogen concentrations, strain KU1 produced higher quantities of esters and fatty acids whereas M522 produced higher concentrations of isoacids, gamma-butyrolactone, higher alcohols and 3-methylthio-1-propanol. We propose that although strains KU1 and M522 have a similar nitrogen consumption profile, they represent useful models for the chemical characterization of wine strains in relation to wine quality. The differential production of aroma compounds by the two strains is discussed in relation to their capacity for nitrogen usage and their impact on winemaking. The results obtained here will help to develop targeted metabolic footprinting methods for the discrimination of industrial yeasts.


Assuntos
Ésteres/metabolismo , Nitrogênio/metabolismo , Odorantes , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Vinho/microbiologia , Ácidos/metabolismo , Álcoois/metabolismo , Biotecnologia , Meios de Cultura/química , Fermentação , Lactonas/metabolismo , Odorantes/análise , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/crescimento & desenvolvimento
17.
J Chromatogr A ; 1157(1-2): 46-50, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17517420

RESUMO

A new method was developed for analysing 4-ethylguaiacol and 4-ethylphenol in the aroma of red wines using dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry detection (GC-MS). Parameters such as extraction solvent, sample volume and disperser solvent were studied and optimised to obtain the best extraction results with the minimum interference from other substances, thus giving clean chromatograms. The response linearity was studied in the usual concentration ranges of analytes in wines (50-1500 microg/L). Repeatability and reproducibility of this method were lower than 5% for both volatile phenols. Limits of detection and limits of quantification were also determined, and the values found were 28 and 95 microg/L for 4-ethylguaiacol and 44 and 147 microg/L for 4-ethylphenol, respectively. This new method has been used for the determination of the volatile phenols concentration in different samples of Tannat wine affected by Brettanomyces contamination.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Fenóis/análise , Vinho/análise , Padrões de Referência , Volatilização
18.
J Agric Food Chem ; 53(5): 1633-6, 2005 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-15740051

RESUMO

While the contribution of 1,8-cineole to the aroma of wine has been reported, it is a matter of controversy that the vineyards producing such wines are surrounded by Eucalyptus trees, which may contribute their essence to the grapes. However, experimental information presented in this paper suggests that 1,8-cineole can be produced by chemical transformation of limonene and alpha-terpineol, and this process may be responsible for the occurrence of Eucalyptus-like aroma in Tannat wines from vines not grown in the vicinity of Eucalyptus trees. A mechanism for the chemical transformation of these aroma compounds is proposed.


Assuntos
Cicloexanóis/análise , Frutas/química , Monoterpenos/análise , Terpenos/análise , Vitis/química , Vinho/análise , Eucaliptol , Eucalyptus , Odorantes/análise , Olfato
19.
FEMS Microbiol Lett ; 243(1): 107-15, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15668008

RESUMO

This paper reports the production of monoterpenes, which elicit a floral aroma in wine, by strains of the yeast Saccharomyces cerevisiae. Terpenes, which are typical components of the essential oils of flowers and fruits, are also present as free and glycosylated conjugates amongst the secondary metabolites of certain wine grape varieties of Vitis vinifera. Hence, when these compounds are present in wine they are considered to originate from grape and not fermentation. However, the biosynthesis of monoterpenes by S. cerevisiae in the absence of grape derived precursors is shown here to be of de novo origin in wine yeast strains. Higher concentration of assimilable nitrogen increased accumulation of linalool and citronellol. Microaerobic compared with anaerobic conditions favored terpene accumulation in the ferment. The amount of linalool produced by some strains of S. cerevisiae could be of sensory importance in wine production. These unexpected results are discussed in relation to the known sterol biosynthetic pathway and to an alternative pathway for terpene biosynthesis not previously described in yeast.


Assuntos
Monoterpenos/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Monoterpenos Acíclicos , Meios de Cultura , Regulação Fúngica da Expressão Gênica , Oxirredução , Saccharomyces cerevisiae/crescimento & desenvolvimento , Vitis/metabolismo
20.
J Agric Food Chem ; 51(18): 5408-13, 2003 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-12926890

RESUMO

The free volatiles, as well as those released from the glycosidically bound forms by enzyme hydrolysis, have been analyzed to chracterize young Tannat wines from two successive vintages. The Tannat wine showed some aroma profile peculiarities detected in the free forms but, above all, in the bound fraction for the level and profile of the norisoprenoidic fraction. Among the free volatile compunds, a rather low content of C(6) alcohols with a prevalence of cis-3-hexen-1-ol on the trans form and sometimes a remarkable level of trans-2-hexen-1-ol seem to be typical for the variety. C(13)-norisoprenoidic and monoterpenic volatiles made up approximately 42% of the total level of the volatiles observed in the glycosidase enzyme-released fraction. The other volatiles were C(6) alcohols (6%) and benzenoid compounds (51%). The dominating monoterpene alcohols were the cis and trans isomers of 3,7-dimethyl-1,6-octadiene-3,8-diol (8-hydroxylinalool). The C(13)-norisoprenoid pattern was composed by 3-hydroxy-beta-damascone, 3-oxo-alpha-ionol, vomifoliol, 4-oxo-beta-ionol, 3-oxo-7,8-dihydro-alpha-ionol, 4-oxo-7,8-dihydro-beta-ionol, grasshopper ketone, and 7,8-dihydrovomifoliol.


Assuntos
Odorantes/análise , Vinho/análise , Cromatografia Gasosa , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Glicosídeos/análise , Monoterpenos/análise , Ácido Chiquímico/análogos & derivados , Uruguai , Vitis/química , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA