Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 519
Filtrar
1.
Npj Imaging ; 2(1): 12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765879

RESUMO

Macrophages are key inflammatory mediators in many pathological conditions, including cardiovascular disease (CVD) and cancer, the leading causes of morbidity and mortality worldwide. This makes macrophage burden a valuable diagnostic marker and several strategies to monitor these cells have been reported. However, such strategies are often high-priced, non-specific, invasive, and/or not quantitative. Here, we developed a positron emission tomography (PET) radiotracer based on apolipoprotein A1 (ApoA1), the main protein component of high-density lipoprotein (HDL), which has an inherent affinity for macrophages. We radiolabeled an ApoA1-mimetic peptide (mA1) with zirconium-89 (89Zr) to generate a lipoprotein-avid PET probe (89Zr-mA1). We first characterized 89Zr-mA1's affinity for lipoproteins in vitro by size exclusion chromatography. To study 89Zr-mA1's in vivo behavior and interaction with endogenous lipoproteins, we performed extensive studies in wildtype C57BL/6 and Apoe-/- hypercholesterolemic mice. Subsequently, we used in vivo PET imaging to study macrophages in melanoma and myocardial infarction using mouse models. The tracer's cell specificity was assessed by histology and mass cytometry (CyTOF). Our data show that 89Zr-mA1 associates with lipoproteins in vitro. This is in line with our in vivo experiments, in which we observed longer 89Zr-mA1 circulation times in hypercholesterolemic mice compared to C57BL/6 controls. 89Zr-mA1 displayed a tissue distribution profile similar to ApoA1 and HDL, with high kidney and liver uptake as well as substantial signal in the bone marrow and spleen. The tracer also accumulated in tumors of melanoma-bearing mice and in the ischemic myocardium of infarcted animals. In these sites, CyTOF analyses revealed that natZr-mA1 was predominantly taken up by macrophages. Our results demonstrate that 89Zr-mA1 associates with lipoproteins and hence accumulates in macrophages in vivo. 89Zr-mA1's high uptake in these cells makes it a promising radiotracer for non-invasively and quantitatively studying conditions characterized by marked changes in macrophage burden.

2.
Eur Heart J ; 45(19): 1753-1764, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753456

RESUMO

BACKGROUND AND AIMS: Chronic stress associates with cardiovascular disease, but mechanisms remain incompletely defined. Advanced imaging was used to identify stress-related neural imaging phenotypes associated with atherosclerosis. METHODS: Twenty-seven individuals with post-traumatic stress disorder (PTSD), 45 trauma-exposed controls without PTSD, and 22 healthy controls underwent 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI). Atherosclerotic inflammation and burden were assessed using 18F-FDG PET (as maximal target-to-background ratio, TBR max) and MRI, respectively. Inflammation was assessed using high-sensitivity C-reactive protein (hsCRP) and leucopoietic imaging (18F-FDG PET uptake in spleen and bone marrow). Stress-associated neural network activity (SNA) was assessed on 18F-FDG PET as amygdala relative to ventromedial prefrontal cortex (vmPFC) activity. MRI diffusion tensor imaging assessed the axonal integrity (AI) of the uncinate fasciculus (major white matter tract connecting vmPFC and amygdala). RESULTS: Median age was 37 years old and 54% of participants were female. There were no significant differences in atherosclerotic inflammation between participants with PTSD and controls; adjusted mean difference in TBR max (95% confidence interval) of the aorta 0.020 (-0.098, 0.138), and of the carotids 0.014 (-0.091, 0.119). Participants with PTSD had higher hsCRP, spleen activity, and aorta atherosclerotic burden (normalized wall index). Participants with PTSD also had higher SNA and lower AI. Across the cohort, carotid atherosclerotic burden (standard deviation of wall thickness) associated positively with SNA and negatively with AI independent of Framingham risk score. CONCLUSIONS: In this study of limited size, participants with PTSD did not have higher atherosclerotic inflammation than controls. Notably, impaired cortico-limbic interactions (higher amygdala relative to vmPFC activity or disruption of their intercommunication) associated with carotid atherosclerotic burden. Larger studies are needed to refine these findings.


Assuntos
Doenças das Artérias Carótidas , Tomografia por Emissão de Pósitrons , Transtornos de Estresse Pós-Traumáticos , Humanos , Feminino , Masculino , Adulto , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Doenças das Artérias Carótidas/fisiopatologia , Doenças das Artérias Carótidas/diagnóstico por imagem , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiopatologia , Compostos Radiofarmacêuticos , Estudos de Casos e Controles , Estresse Psicológico/fisiopatologia , Estresse Psicológico/complicações
3.
Artigo em Inglês | MEDLINE | ID: mdl-38652572

RESUMO

OBJECTIVES: Rheumatoid arthritis (RA) and atherosclerosis share many common inflammatory pathways. We studied whether a multi-biomarker panel for RA disease activity (MBDA) would associate with changes in arterial inflammation in an interventional trial. METHODS: In the TARGET Trial, RA patients with active disease despite methotrexate were randomly assigned to the addition of either a TNF inhibitor or sulfasalazine+hydroxychloroquine (triple therapy). Baseline and 24-week follow-up 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography scans were assessed for change in arterial inflammation measured as the maximal arterial target-to-blood background ratio of FDG uptake in the most diseased segment of the carotid arteries or aorta (MDS-TBRmax). The MBDA test, measured at baseline and weeks 6, 18, and 24, was assessed for its association with the change in MDS-TBRmax. RESULTS: Interpretable scans were available at baseline and week 24 for n = 112 patients. The MBDA score at week 24 was significantly correlated with the change in MDR-TBRmax (Spearman's rho = 0.239; p= 0.011) and remained significantly associated after adjustment for relevant confounders. Those with low MBDA at week 24 had a statistically significant adjusted reduction in arterial inflammation of 0.35 units vs no significant reduction in those who did not achieve low MBDA. Neither DAS28-CRP nor CRP predicted change in arterial inflammation. The MBDA component with the strongest association with change in arterial inflammation was serum amyloid A (SAA). CONCLUSIONS: Among treated RA patients, achieved MBDA predicts of changes in arterial inflammation. Achieving low MBDA at 24 weeks was associated with clinically meaningful reductions in arterial inflammation, regardless of treatment.

5.
JMIR Ment Health ; 11: e55552, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663011

RESUMO

BACKGROUND: Heart rate variability (HRV) biofeedback is often performed with structured education, laboratory-based assessments, and practice sessions. It has been shown to improve psychological and physiological function across populations. However, a means to remotely use and monitor this approach would allow for wider use of this technique. Advancements in wearable and digital technology present an opportunity for the widespread application of this approach. OBJECTIVE: The primary aim of the study was to determine the feasibility of fully remote, self-administered short sessions of HRV-directed biofeedback in a diverse population of health care workers (HCWs). The secondary aim was to determine whether a fully remote, HRV-directed biofeedback intervention significantly alters longitudinal HRV over the intervention period, as monitored by wearable devices. The tertiary aim was to estimate the impact of this intervention on metrics of psychological well-being. METHODS: To determine whether remotely implemented short sessions of HRV biofeedback can improve autonomic metrics and psychological well-being, we enrolled HCWs across 7 hospitals in New York City in the United States. They downloaded our study app, watched brief educational videos about HRV biofeedback, and used a well-studied HRV biofeedback program remotely through their smartphone. HRV biofeedback sessions were used for 5 minutes per day for 5 weeks. HCWs were then followed for 12 weeks after the intervention period. Psychological measures were obtained over the study period, and they wore an Apple Watch for at least 7 weeks to monitor the circadian features of HRV. RESULTS: In total, 127 HCWs were enrolled in the study. Overall, only 21 (16.5%) were at least 50% compliant with the HRV biofeedback intervention, representing a small portion of the total sample. This demonstrates that this study design does not feasibly result in adequate rates of compliance with the intervention. Numerical improvement in psychological metrics was observed over the 17-week study period, although it did not reach statistical significance (all P>.05). Using a mixed effect cosinor model, the mean midline-estimating statistic of rhythm (MESOR) of the circadian pattern of the SD of the interbeat interval of normal sinus beats (SDNN), an HRV metric, was observed to increase over the first 4 weeks of the biofeedback intervention in HCWs who were at least 50% compliant. CONCLUSIONS: In conclusion, we found that using brief remote HRV biofeedback sessions and monitoring its physiological effect using wearable devices, in the manner that the study was conducted, was not feasible. This is considering the low compliance rates with the study intervention. We found that remote short sessions of HRV biofeedback demonstrate potential promise in improving autonomic nervous function and warrant further study. Wearable devices can monitor the physiological effects of psychological interventions.


Assuntos
Biorretroalimentação Psicológica , Frequência Cardíaca , Dispositivos Eletrônicos Vestíveis , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biorretroalimentação Psicológica/métodos , Biorretroalimentação Psicológica/instrumentação , Pessoal de Saúde , Frequência Cardíaca/fisiologia , Cidade de Nova Iorque , Estudos Prospectivos , Telemedicina/métodos , Telemedicina/instrumentação
6.
Nat Rev Cardiol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575752

RESUMO

Assessing atherosclerosis severity is essential for precise patient stratification. Specifically, there is a need to identify patients with residual inflammation because these patients remain at high risk of cardiovascular events despite optimal management of cardiovascular risk factors. Molecular imaging techniques, such as PET, can have an essential role in this context. PET imaging can indicate tissue-based disease status, detect early molecular changes and provide whole-body information. Advances in molecular biology and bioinformatics continue to help to decipher the complex pathogenesis of atherosclerosis and inform the development of imaging tracers. Concomitant advances in tracer synthesis methods and PET imaging technology provide future possibilities for atherosclerosis imaging. In this Review, we summarize the latest developments in PET imaging techniques and technologies for assessment of atherosclerotic cardiovascular disease and discuss the relationship between imaging readouts and transcriptomics-based plaque phenotyping.

7.
J Am Coll Cardiol ; 83(16): 1543-1553, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38631773

RESUMO

BACKGROUND: The mechanisms underlying the psychological and cardiovascular disease (CVD) benefits of physical activity (PA) are not fully understood. OBJECTIVES: This study tested whether PA: 1) attenuates stress-related neural activity, which is known to potentiate CVD and for its role in anxiety/depression; 2) decreases CVD in part through this neural effect; and 3) has a greater impact on CVD risk among individuals with depression. METHODS: Participants from the Mass General Brigham Biobank who completed a PA survey were studied. A subset underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomographic imaging. Stress-related neural activity was measured as the ratio of resting amygdalar-to-cortical activity (AmygAC). CVD events were ascertained from electronic health records. RESULTS: A total of 50,359 adults were included (median age 60 years [Q1-Q3: 45-70 years]; 40.1% male). Greater PA was associated with both lower AmygAC (standardized ß: -0.245; 95% CI: -0.444 to -0.046; P = 0.016) and CVD events (HR: 0.802; 95% CI: 0.719-0.896; P < 0.001) in multivariable models. AmygAC reductions partially mediated PA's CVD benefit (OR: 0.96; 95% CI: 0.92-0.99; P < 0.05). Moreover, PA's benefit on incident CVD events was greater among those with (vs without) preexisting depression (HR: 0.860; 95% CI: 0.810-0.915; vs HR: 0.929; 95% CI: 0.910-0.949; P interaction = 0.011). Additionally, PA above guideline recommendations further reduced CVD events, but only among those with preexisting depression (P interaction = 0.023). CONCLUSIONS: PA appears to reduce CVD risk in part by acting through the brain's stress-related activity; this may explain the novel observation that PA reduces CVD risk to a greater extent among individuals with depression.


Assuntos
Doenças Cardiovasculares , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Exercício Físico , Tomografia Computadorizada por Raios X , Tomografia por Emissão de Pósitrons , Vias Neurais , Fatores de Risco
8.
NMR Biomed ; : e5143, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523402

RESUMO

Magnetic resonance imaging (MRI) is a ubiquitous medical imaging technology with applications in disease diagnostics, intervention, and treatment planning. Accurate MRI segmentation is critical for diagnosing abnormalities, monitoring diseases, and deciding on a course of treatment. With the advent of advanced deep learning frameworks, fully automated and accurate MRI segmentation is advancing. Traditional supervised deep learning techniques have advanced tremendously, reaching clinical-level accuracy in the field of segmentation. However, these algorithms still require a large amount of annotated data, which is oftentimes unavailable or impractical. One way to circumvent this issue is to utilize algorithms that exploit a limited amount of labeled data. This paper aims to review such state-of-the-art algorithms that use a limited number of annotated samples. We explain the fundamental principles of self-supervised learning, generative models, few-shot learning, and semi-supervised learning and summarize their applications in cardiac, abdomen, and brain MRI segmentation. Throughout this review, we highlight algorithms that can be employed based on the quantity of annotated data available. We also present a comprehensive list of notable publicly available MRI segmentation datasets. To conclude, we discuss possible future directions of the field-including emerging algorithms, such as contrastive language-image pretraining, and potential combinations across the methods discussed-that can further increase the efficacy of image segmentation with limited labels.

9.
JACC Cardiovasc Imaging ; 17(4): 411-424, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38300202

RESUMO

BACKGROUND: Imaging with late gadolinium enhancement (LGE) magnetic resonance (MR) and 18F-fluorodeoxyglucose (18F-FDG) PET allows complementary assessment of myocardial injury and disease activity and has shown promise for improved characterization of active cardiac sarcoidosis (CS) based on the combined positive imaging outcome, MR(+)PET(+). OBJECTIVES: This study aims to evaluate qualitative and quantitative assessments of hybrid MR/PET imaging in CS and to evaluate its association with cardiac-related outcomes. METHODS: A total of 148 patients with suspected CS underwent hybrid MR/PET imaging. Patients were classified based on the presence/absence of LGE (MR+/MR-), presence/absence of 18F-FDG (PET+/PET-), and pattern of 18F-FDG uptake (focal/diffuse) into the following categories: MR(+)PET(+)FOCAL, MR(+)PET(+)DIFFUSE, MR(+)PET(-), MR(-)PET(+)FOCAL, MR(-)PET(+)DIFFUSE, MR(-)PET(-). Further analysis classified MR positivity based on %LGE exceeding 5.7% as MR(+/-)5.7%. Quantitative values of standard uptake value, target-to-background ratio, target-to-normal-myocardium ratio (TNMRmax), and T2 were measured. The primary clinical endpoint was met by the occurrence of cardiac arrest, ventricular tachycardia, or secondary prevention implantable cardioverter-defibrillator (ICD) before the end of the study. The secondary endpoint was met by any of the primary endpoint criteria plus heart failure or heart block. MR/PET imaging results were compared between those meeting or not meeting the clinical endpoints. RESULTS: Patients designated MR(+)5.7%PET(+)FOCAL had increased odds of meeting the primary clinical endpoint compared to those with all other imaging classifications (unadjusted OR: 9.2 [95% CI: 3.0-28.7]; P = 0.0001), which was higher than the odds based on MR or PET alone. TNMRmax achieved an area under the receiver-operating characteristic curve of 0.90 for separating MR(+)PET(+)FOCAL from non-MR(+)PET(+)FOCAL, and 0.77 for separating those reaching the clinical endpoint from those not reaching the clinical endpoint. CONCLUSIONS: Hybrid MR/PET image-based classification of CS was statistically associated with clinical outcomes in CS. TNMRmax had modest sensitivity and specificity for quantifying the imaging-based classification MR(+)PET(+)FOCAL and was associated with outcomes. Use of combined MR and PET image-based classification may have use in prognostication and treatment management in CS.


Assuntos
Cardiomiopatias , Miocardite , Sarcoidose , Humanos , Fluordesoxiglucose F18 , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/terapia , Cardiomiopatias/complicações , Meios de Contraste , Compostos Radiofarmacêuticos , Valor Preditivo dos Testes , Gadolínio , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética/métodos , Miocardite/complicações , Espectroscopia de Ressonância Magnética , Sarcoidose/diagnóstico por imagem , Sarcoidose/terapia , Sarcoidose/complicações
10.
Brain Behav Immun ; 117: 149-154, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38218349

RESUMO

While posttraumatic stress disorder (PTSD) is known to associate with an elevated risk for major adverse cardiovascular events (MACE), few studies have examined mechanisms underlying this link. Recent studies have demonstrated that neuro-immune mechanisms, (manifested by heightened stress-associated neural activity (SNA), autonomic nervous system activity, and inflammation), link common stress syndromes to MACE. However, it is unknown if neuro-immune mechanisms similarly link PTSD to MACE. The current study aimed to test the hypothesis that upregulated neuro-immune mechanisms increase MACE risk among individuals with PTSD. This study included N = 118,827 participants from a large hospital-based biobank. Demographic, diagnostic, and medical history data collected from the biobank. SNA (n = 1,520), heart rate variability (HRV; [n = 11,463]), and high sensitivity C-reactive protein (hs-CRP; [n = 15,164]) were obtained for a subset of participants. PTSD predicted MACE after adjusting for traditional MACE risk factors (hazard ratio (HR) [95 % confidence interval (CI)] = 1.317 [1.098, 1.580], ß = 0.276, p = 0.003). The PTSD-to-MACE association was mediated by SNA (CI = 0.005, 0.133, p < 0.05), HRV (CI = 0.024, 0.056, p < 0.05), and hs-CRP (CI = 0.010, 0.040, p < 0.05). This study provides evidence that neuro-immune pathways may play important roles in the mechanisms linking PTSD to MACE. Future studies are needed to determine if these markers are relevant targets for PTSD treatment and if improvements in SNA, HRV, and hs-CRP associate with reduced MACE risk in this patient population.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Transtornos de Estresse Pós-Traumáticos , Humanos , Proteína C-Reativa , Coração
11.
J Heart Lung Transplant ; 43(4): 529-538, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37951322

RESUMO

BACKGROUND: Previous retrospective studies suggest a good diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET)/computed tomography (CT) in left ventricular assist device (LVAD) infections. Our aim was to prospectively evaluate the role of PET/CT in the characterization and impact on clinical management of LVAD infections. METHODS: A total of 40 patients (aged 58 [53-62] years) with suspected LVAD infection and 5 controls (aged 69 [64-71] years) underwent 18F-FDG-PET/CT. Four LVAD components were evaluated: exit site and subcutaneous driveline (peripheral), pump pocket, and outflow graft. The location with maximal uptake was considered the presumed site of infection. Infection was confirmed by positive culture (exit site or blood) and/or surgical findings. RESULTS: Visual uptake was present in 40 patients (100%) in the infection group vs 4 (80%) control subjects. For each individual component, the presence of uptake was more frequent in the infection than in the control group. The location of maximal uptake was most frequently the pump pocket (48%) in the infection group and the peripheral components (75%) in the control group. Maximum standard uptake values (SUVmax) were higher in the infection than in the control group: SUVmax (average all components): 6.9 (5.1-8.5) vs 3.8 (3.7-4.3), p = 0.002; SUVmax (location of maximal uptake): 10.6 ± 4.0 vs 5.4 ± 1.9, p = 0.01. Pump pocket infections were more frequent in patients with bacteremia than without bacteremia (79% vs 31%, p = 0.011). Pseudomonas (32%) and methicillin-susceptible Staphylococcus aureus (29%) were the most frequent pathogens and were associated with pump pocket infections, while Staphylococcus epidermis (11%) was associated with peripheral infections. PET/CT affected the clinical management of 83% of patients with infection, resulting in surgical debridement (8%), pump exchange (13%), and upgrade in the transplant listing status (10%), leading to 8% of urgent transplants. CONCLUSIONS: 18F-FDG-PET/CT enables the diagnosis and characterization of the extent of LVAD infections, which can significantly affect the clinical management of these patients.


Assuntos
Bacteriemia , Coração Auxiliar , Infecções Relacionadas à Prótese , Humanos , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Coração Auxiliar/efeitos adversos , Tomografia Computadorizada por Raios X , Estudos Retrospectivos , Infecções Relacionadas à Prótese/diagnóstico por imagem , Infecções Relacionadas à Prótese/etiologia , Bacteriemia/diagnóstico , Bacteriemia/etiologia
12.
Small ; : e2307502, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050951

RESUMO

Nanomaterials have revolutionized medicine by enabling control over drugs' pharmacokinetics, biodistribution, and biocompatibility. However, most nanotherapeutic batches are highly heterogeneous, meaning they comprise nanoparticles that vary in size, shape, charge, composition, and ligand functionalization. Similarly, individual nanotherapeutics often have heterogeneously distributed components, ligands, and charges. This review discusses nanotherapeutic heterogeneity's sources and effects on experimental readouts and therapeutic efficacy. Among other topics, it demonstrates that heterogeneity exists in nearly all nanotherapeutic types, examines how nanotherapeutic heterogeneity arises, and discusses how heterogeneity impacts nanomaterials' in vitro and in vivo behavior. How nanotherapeutic heterogeneity skews experimental readouts and complicates their optimization and clinical translation is also shown. Lastly, strategies for limiting nanotherapeutic heterogeneity are reviewed and recommendations for developing more reproducible and effective nanotherapeutics provided.

13.
Bioengineering (Basel) ; 10(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38135987

RESUMO

The rapid rise of artificial intelligence (AI) in medicine in the last few years highlights the importance of developing bigger and better systems for data and model sharing. However, the presence of Protected Health Information (PHI) in medical data poses a challenge when it comes to sharing. One potential solution to mitigate the risk of PHI breaches is to exclusively share pre-trained models developed using private datasets. Despite the availability of these pre-trained networks, there remains a need for an adaptable environment to test and fine-tune specific models tailored for clinical tasks. This environment should be open for peer testing, feedback, and continuous model refinement, allowing dynamic model updates that are especially important in the medical field, where diseases and scanning techniques evolve rapidly. In this context, the Discovery Viewer (DV) platform was developed in-house at the Biomedical Engineering and Imaging Institute at Mount Sinai (BMEII) to facilitate the creation and distribution of cutting-edge medical AI models that remain accessible after their development. The all-in-one platform offers a unique environment for non-AI experts to learn, develop, and share their own deep learning (DL) concepts. This paper presents various use cases of the platform, with its primary goal being to demonstrate how DV holds the potential to empower individuals without expertise in AI to create high-performing DL models. We tasked three non-AI experts to develop different musculoskeletal AI projects that encompassed segmentation, regression, and classification tasks. In each project, 80% of the samples were provided with a subset of these samples annotated to aid the volunteers in understanding the expected annotation task. Subsequently, they were responsible for annotating the remaining samples and training their models through the platform's "Training Module". The resulting models were then tested on the separate 20% hold-off dataset to assess their performance. The classification model achieved an accuracy of 0.94, a sensitivity of 0.92, and a specificity of 1. The regression model yielded a mean absolute error of 14.27 pixels. And the segmentation model attained a Dice Score of 0.93, with a sensitivity of 0.9 and a specificity of 0.99. This initiative seeks to broaden the community of medical AI model developers and democratize the access of this technology to all stakeholders. The ultimate goal is to facilitate the transition of medical AI models from research to clinical settings.

14.
Cell Rep ; 42(12): 113458, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995184

RESUMO

Innate immune memory, also called "trained immunity," is a functional state of myeloid cells enabling enhanced immune responses. This phenomenon is important for host defense, but also plays a role in various immune-mediated conditions. We show that exogenously administered sphingolipids and inhibition of sphingolipid metabolizing enzymes modulate trained immunity. In particular, we reveal that acid ceramidase, an enzyme that converts ceramide to sphingosine, is a potent regulator of trained immunity. We show that acid ceramidase regulates the transcription of histone-modifying enzymes, resulting in profound changes in histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation. We confirm our findings by identifying single-nucleotide polymorphisms in the region of ASAH1, the gene encoding acid ceramidase, that are associated with the trained immunity cytokine response. Our findings reveal an immunomodulatory effect of sphingolipids and identify acid ceramidase as a relevant therapeutic target to modulate trained immunity responses in innate immune-driven disorders.


Assuntos
Ceramidase Ácida , Imunidade Treinada , Ceramidase Ácida/genética , Ceramidase Ácida/metabolismo , Histonas , Lisina , Esfingolipídeos/genética , Imunidade Inata
15.
JMIR Res Protoc ; 12: e49204, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971801

RESUMO

BACKGROUND: The increasing use of smartphones, wearables, and connected devices has enabled the increasing application of digital technologies for research. Remote digital study platforms comprise a patient-interfacing digital application that enables multimodal data collection from a mobile app and connected sources. They offer an opportunity to recruit at scale, acquire data longitudinally at a high frequency, and engage study participants at any time of the day in any place. Few published descriptions of centralized digital research platforms provide a framework for their development. OBJECTIVE: This study aims to serve as a road map for those seeking to develop a centralized digital research platform. We describe the technical and functional aspects of the ehive app, the centralized digital research platform of the Hasso Plattner Institute for Digital Health at Mount Sinai Hospital, New York, New York. We then provide information about ongoing studies hosted on ehive, including usership statistics and data infrastructure. Finally, we discuss our experience with ehive in the broader context of the current landscape of digital health research platforms. METHODS: The ehive app is a multifaceted and patient-facing central digital research platform that permits the collection of e-consent for digital health studies. An overview of its development, its e-consent process, and the tools it uses for participant recruitment and retention are provided. Data integration with the platform and the infrastructure supporting its operations are discussed; furthermore, a description of its participant- and researcher-facing dashboard interfaces and the e-consent architecture is provided. RESULTS: The ehive platform was launched in 2020 and has successfully hosted 8 studies, namely 6 observational studies and 2 clinical trials. Approximately 1484 participants downloaded the app across 36 states in the United States. The use of recruitment methods such as bulk messaging through the EPIC electronic health records and standard email portals enables broad recruitment. Light-touch engagement methods, used in an automated fashion through the platform, maintain high degrees of engagement and retention. The ehive platform demonstrates the successful deployment of a central digital research platform that can be modified across study designs. CONCLUSIONS: Centralized digital research platforms such as ehive provide a novel tool that allows investigators to expand their research beyond their institution, engage in large-scale longitudinal studies, and combine multimodal data streams. The ehive platform serves as a model for groups seeking to develop similar digital health research programs. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/49204.

16.
J Vis Exp ; (199)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37811943

RESUMO

The current standard for measuring coronary artery calcification to determine the extent of atherosclerosis is by calculating the Agatston score from computed tomography (CT). However, the Agatston score disregards pixel values less than 130 Hounsfield Units (HU) and calcium regions less than 1 mm2. Due to this thresholding, the score is not sensitive to small, weakly attenuating regions of calcium deposition and may not detect nascent micro-calcification. A recently proposed metric called the spatially weighted calcium score (SWCS) also utilizes CT but does not include a threshold for HU and does not require elevated signals in contiguous pixels. Thus, the SWCS is sensitive to weakly attenuating, smaller calcium deposits and may improve the measurement of coronary heart disease risk. Currently, the SWCS is underutilized owing to the added computational complexity. To promote translation of the SWCS into clinical research and reliable, repeatable computation of the score, the aim of this study was to develop a semi-automatic graphical tool that calculates both the SWCS and the Agatston score. The program requires gated cardiac CT scans with a calcium hydroxyapatite phantom in the field of view. The phantom allows for deriving a weighting function, from which each pixel's weight is adjusted, allowing for the mitigation of signal variations and variability between scans. With all three anatomical views visible simultaneously, the user traces the course of the four main coronary arteries by placing points or regions of interest. Features such as scroll-to-zoom, double-click to delete, and brightness/contrast adjustment, along with written guidance at every step, make the program user-friendly and easy to use. Once tracing the arteries is complete, the program generates reports, which include the scores and snapshots of any visible calcium. The SWCS may reveal the presence of subclinical disease, which may be used for early intervention and lifestyle changes.


Assuntos
Calcinose , Doença da Artéria Coronariana , Humanos , Cálcio , Vasos Coronários/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Reprodutibilidade dos Testes , Angiografia Coronária/métodos
17.
Med Phys ; 50(12): 7606-7618, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874014

RESUMO

BACKGROUND: The main advantage of ultra-high field (UHF) magnetic resonance neuroimaging is theincreased signal-to-noise ratio (SNR) compared with lower field strength imaging. However, the wavelength effect associated with UHF MRI results in radiofrequency (RF) inhomogeneity, compromising whole brain coverage for many commercial coils. Approaches to resolving this issue of transmit field inhomogeneity include the design of parallel transmit systems (PTx), RF pulse design, and applying passive RF shimming such as high dielectric materials. However, these methods have some drawbacks such as unstable material parameters of dielectric pads, high-cost, and complexity of PTx systems. Metasurfaces are artificial structures with a unique platform that can control the propagation of the electromagnetic (EM) waves, and they are very promising for engineering EM device. Implementation of meta-arrays enhancing MRI has been explored previously in several studies. PURPOSE: The aim of this study was to assess the effect of new meta-array technology on enhancing the brain MRI at 7T. A meta-array based on a hybrid structure consisting of an array of broadside-coupled split-ring resonators and high-permittivity materials was designed to work at the Larmor frequency of a 7 Tesla (7T) MRI scanner. When placed behind the head and neck, this construct improves the SNR in the region of the cerebellum,brainstem and the inferior aspect of the temporal lobes. METHODS: Numerical electromagnetic simulations were performed to optimize the meta-array design parameters and determine the RF circuit configuration. The resultant transmit-efficiency and signal sensitivity improvements were experimentally analyzed in phantoms followed by healthy volunteers using a 7T whole-body MRI scanner equipped with a standard one-channel transmit, 32-channel receive head coil. Efficacy was evaluated through acquisition with and without the meta-array using two basic sequences: gradient-recalled-echo (GRE) and turbo-spin-echo (TSE). RESULTS: Experimental phantom analysis confirmed two-fold improvement in the transmit efficiency and 1.4-fold improvement in the signal sensitivity in the target region. In vivo GRE and TSE images with the meta-array in place showed enhanced visualization in inferior regions of the brain, especially of the cerebellum, brainstem, and cervical spinal cord. CONCLUSION: Addition of the meta-array to commonly used MRI coils can enhance SNR to extend the anatomical coverage of the coil and improve overall MRI coil performance. This enhancement in SNR can be leveraged to obtain a higher resolution image over the same time slot or faster acquisition can be achieved with same resolution. Using this technique could improve the performance of existing commercial coils at 7T for whole brain and other applications.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Humanos , Encéfalo/diagnóstico por imagem , Tronco Encefálico , Cabeça , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído , Desenho de Equipamento
18.
JMIR Form Res ; 7: e46905, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37883177

RESUMO

BACKGROUND: Early prediction of the need for invasive mechanical ventilation (IMV) in patients hospitalized with COVID-19 symptoms can help in the allocation of resources appropriately and improve patient outcomes by appropriately monitoring and treating patients at the greatest risk of respiratory failure. To help with the complexity of deciding whether a patient needs IMV, machine learning algorithms may help bring more prognostic value in a timely and systematic manner. Chest radiographs (CXRs) and electronic medical records (EMRs), typically obtained early in patients admitted with COVID-19, are the keys to deciding whether they need IMV. OBJECTIVE: We aimed to evaluate the use of a machine learning model to predict the need for intubation within 24 hours by using a combination of CXR and EMR data in an end-to-end automated pipeline. We included historical data from 2481 hospitalizations at The Mount Sinai Hospital in New York City. METHODS: CXRs were first resized, rescaled, and normalized. Then lungs were segmented from the CXRs by using a U-Net algorithm. After splitting them into a training and a test set, the training set images were augmented. The augmented images were used to train an image classifier to predict the probability of intubation with a prediction window of 24 hours by retraining a pretrained DenseNet model by using transfer learning, 10-fold cross-validation, and grid search. Then, in the final fusion model, we trained a random forest algorithm via 10-fold cross-validation by combining the probability score from the image classifier with 41 longitudinal variables in the EMR. Variables in the EMR included clinical and laboratory data routinely collected in the inpatient setting. The final fusion model gave a prediction likelihood for the need of intubation within 24 hours as well. RESULTS: At a prediction probability threshold of 0.5, the fusion model provided 78.9% (95% CI 59%-96%) sensitivity, 83% (95% CI 76%-89%) specificity, 0.509 (95% CI 0.34-0.67) F1-score, 0.874 (95% CI 0.80-0.94) area under the receiver operating characteristic curve (AUROC), and 0.497 (95% CI 0.32-0.65) area under the precision recall curve (AUPRC) on the holdout set. Compared to the image classifier alone, which had an AUROC of 0.577 (95% CI 0.44-0.73) and an AUPRC of 0.206 (95% CI 0.08-0.38), the fusion model showed significant improvement (P<.001). The most important predictor variables were respiratory rate, C-reactive protein, oxygen saturation, and lactate dehydrogenase. The imaging probability score ranked 15th in overall feature importance. CONCLUSIONS: We show that, when linked with EMR data, an automated deep learning image classifier improved performance in identifying hospitalized patients with severe COVID-19 at risk for intubation. With additional prospective and external validation, such a model may assist risk assessment and optimize clinical decision-making in choosing the best care plan during the critical stages of COVID-19.

19.
Ann Intern Med ; 176(10): 1358-1369, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37812781

RESUMO

BACKGROUND: Substantial effort has been directed toward demonstrating uses of predictive models in health care. However, implementation of these models into clinical practice may influence patient outcomes, which in turn are captured in electronic health record data. As a result, deployed models may affect the predictive ability of current and future models. OBJECTIVE: To estimate changes in predictive model performance with use through 3 common scenarios: model retraining, sequentially implementing 1 model after another, and intervening in response to a model when 2 are simultaneously implemented. DESIGN: Simulation of model implementation and use in critical care settings at various levels of intervention effectiveness and clinician adherence. Models were either trained or retrained after simulated implementation. SETTING: Admissions to the intensive care unit (ICU) at Mount Sinai Health System (New York, New York) and Beth Israel Deaconess Medical Center (Boston, Massachusetts). PATIENTS: 130 000 critical care admissions across both health systems. INTERVENTION: Across 3 scenarios, interventions were simulated at varying levels of clinician adherence and effectiveness. MEASUREMENTS: Statistical measures of performance, including threshold-independent (area under the curve) and threshold-dependent measures. RESULTS: At fixed 90% sensitivity, in scenario 1 a mortality prediction model lost 9% to 39% specificity after retraining once and in scenario 2 a mortality prediction model lost 8% to 15% specificity when created after the implementation of an acute kidney injury (AKI) prediction model; in scenario 3, models for AKI and mortality prediction implemented simultaneously, each led to reduced effective accuracy of the other by 1% to 28%. LIMITATIONS: In real-world practice, the effectiveness of and adherence to model-based recommendations are rarely known in advance. Only binary classifiers for tabular ICU admissions data were simulated. CONCLUSION: In simulated ICU settings, a universally effective model-updating approach for maintaining model performance does not seem to exist. Model use may have to be recorded to maintain viability of predictive modeling. PRIMARY FUNDING SOURCE: National Center for Advancing Translational Sciences.


Assuntos
Injúria Renal Aguda , Inteligência Artificial , Humanos , Unidades de Terapia Intensiva , Cuidados Críticos , Atenção à Saúde
20.
Nat Cardiovasc Res ; 2(6): 550-571, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37771373

RESUMO

The development of new immunotherapies to treat the inflammatory mechanisms that sustain atherosclerotic cardiovascular disease (ASCVD) is urgently needed. Herein, we present a path to drug repurposing to identify immunotherapies for ASCVD. The integration of time-of-flight mass cytometry and RNA sequencing identified unique inflammatory signatures in peripheral blood mononuclear cells stimulated with ASCVD plasma. By comparing these inflammatory signatures to large-scale gene expression data from the LINCS L1000 dataset, we identified drugs that could reverse this inflammatory response. Ex vivo screens, using human samples, showed that saracatinib-a phase 2a-ready SRC and ABL inhibitor-reversed the inflammatory responses induced by ASCVD plasma. In Apoe-/- mice, saracatinib reduced atherosclerosis progression by reprogramming reparative macrophages. In a rabbit model of advanced atherosclerosis, saracatinib reduced plaque inflammation measured by [18F] fluorodeoxyglucose positron emission tomography-magnetic resonance imaging. Here we show a systems immunology-driven drug repurposing with a preclinical validation strategy to aid the development of cardiovascular immunotherapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...