Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256855

RESUMO

Individuals with acute malaria infection generated high levels of antibodies that cross-react with the SARS-CoV-2 Spike protein. Cross-reactive antibodies specifically recognized the sialic acid moiety on N-linked glycans of the Spike protein and do not neutralize in vitro SARS-CoV-2. Sero-surveillance is critical for monitoring and projecting disease burden and risk during the pandemic; however, routine use of Spike protein-based assays may overestimate SARS-CoV-2 exposure and population-level immunity in malaria-endemic countries.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253992

RESUMO

Prior to the emergence of antigenically distinct SARS-CoV-2 variants, reinfections were reported infrequently - presumably due to the generation of durable and protective immune responses. However, case reports also suggested that rare, repeated infections may occur as soon as 48 days following initial disease onset. The underlying immunologic deficiencies enabling SARS-CoV-2 reinfections are currently unknown. Here we describe a renal transplant recipient who developed recurrent, symptomatic SARS-CoV-2 infection - confirmed by whole virus genome sequencing - 7 months after primary infection. To elucidate the immunological mechanisms responsible for SARS-CoV-2 reinfection, we performed longitudinal profiling of cellular and humoral responses during both primary and recurrent SARS-CoV-2 infection. We found that the patient responded to the primary infection with transient, poor-quality adaptive immune responses. The patients immune system was further compromised by intervening treatment for acute rejection of the renal allograft prior to reinfection. Importantly, we also identified the development of neutralizing antibodies and the formation of humoral memory responses prior to SARS-CoV-2 reinfection. However, these neutralizing antibodies failed to confer protection against reinfection, suggesting that additional factors are required for efficient prevention of SARS-CoV-2 reinfection. Further, we found no evidence supporting viral evasion of primary adaptive immune responses, suggesting that susceptibility to reinfection may be determined by host factors rather than pathogen adaptation in this patient. In summary, our study suggests that a low neutralizing antibody presence alone is not sufficient to confer resistance against reinfection. Thus, patients with solid organ transplantation, or patients who are otherwise immunosuppressed, who recover from infection with SARS-CoV-2 may not develop sufficient protective immunity and are at risk of reinfection.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250452

RESUMO

Pregnant women appear to be at increased risk for severe outcomes associated with COVID-19, but the pathophysiology underlying this increased morbidity and its potential impact on the developing fetus is not well understood. In this study of pregnant women with and without COVID-19, we assessed viral and immune dynamics at the placenta during maternal SARS-CoV-2 infection. Amongst uninfected women, ACE2 was detected by immunohistochemistry in syncytiotrophoblast cells of the normal placenta during early pregnancy but was rarely seen in healthy placentas at full term. Term placentas from women infected with SARS-CoV-2, however, displayed a significant increase in ACE2 levels. Using immortalized cell lines and primary isolated placental cells, we determined the vulnerability of various placental cell types to direct infection by SARS-CoV-2 in vitro. Yet, despite the susceptibility of placental cells to SARS-CoV-2 infection, viral RNA was detected in the placentas of only a subset ([~]13%) of women in this cohort. Through single cell transcriptomic analyses, we found that the maternal-fetal interface of SARS-CoV-2-infected women exhibited markers associated with pregnancy complications, such as preeclampsia, and robust immune responses, including increased activation of placental NK and T cells and increased expression of interferon-related genes. Overall, this study suggests that SARS-CoV-2 is associated with immune activation at the maternal-fetal interface even in the absence of detectable local viral invasion. While this likely represents a protective mechanism shielding the placenta from infection, inflammatory changes in the placenta may also contribute to poor pregnancy outcomes and thus warrant further investigation.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21249236

RESUMO

While several clinical and immunological parameters correlate with disease severity and mortality in SARS-CoV-2 infection, work remains in identifying unifying correlates of coronavirus disease 2019 (COVID-19) that can be used to guide clinical practice. Here, we examine saliva and nasopharyngeal (NP) viral load over time and correlate them with patient demographics, and cellular and immune profiling. We found that saliva viral load was significantly higher in those with COVID-19 risk factors; that it correlated with increasing levels of disease severity and showed a superior ability over nasopharyngeal viral load as a predictor of mortality over time (AUC=0.90). A comprehensive analysis of immune factors and cell subsets revealed strong predictors of high and low saliva viral load, which were associated with increased disease severity or better overall outcomes, respectively. Saliva viral load was positively associated with many known COVID-19 inflammatory markers such as IL-6, IL-18, IL-10, and CXCL10, as well as type 1 immune response cytokines. Higher saliva viral loads strongly correlated with the progressive depletion of platelets, lymphocytes, and effector T cell subsets including circulating follicular CD4 T cells (cTfh). Anti-spike (S) and anti-receptor binding domain (RBD) IgG levels were negatively correlated with saliva viral load showing a strong temporal association that could help distinguish severity and mortality in COVID-19. Finally, patients with fatal COVID-19 exhibited higher viral loads, which correlated with the depletion of cTfh cells, and lower production of anti-RBD and anti-S IgG levels. Together these results demonstrated that viral load - as measured by saliva but not nasopharyngeal -- is a dynamic unifying correlate of disease presentation, severity, and mortality over time.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20247205

RESUMO

COVID-19 manifests with a wide spectrum of clinical phenotypes that are characterized by exaggerated and misdirected host immune responses1-8. While pathological innate immune activation is well documented in severe disease1, the impact of autoantibodies on disease progression is less defined. Here, we used a high-throughput autoantibody discovery technique called Rapid Extracellular Antigen Profiling (REAP) to screen a cohort of 194 SARS-CoV-2 infected COVID-19 patients and healthcare workers for autoantibodies against 2,770 extracellular and secreted proteins (the "exoproteome"). We found that COVID-19 patients exhibit dramatic increases in autoantibody reactivities compared to uninfected controls, with a high prevalence of autoantibodies against immunomodulatory proteins including cytokines, chemokines, complement components, and cell surface proteins. We established that these autoantibodies perturb immune function and impair virological control by inhibiting immunoreceptor signaling and by altering peripheral immune cell composition, and found that murine surrogates of these autoantibodies exacerbate disease severity in a mouse model of SARS-CoV-2 infection. Analysis of autoantibodies against tissue-associated antigens revealed associations with specific clinical characteristics and disease severity. In summary, these findings implicate a pathological role for exoproteome-directed autoantibodies in COVID-19 with diverse impacts on immune functionality and associations with clinical outcomes.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-293464

RESUMO

One third of COVID-19 patients develop significant neurological symptoms, yet SARS-CoV-2 is rarely detected in central nervous system (CNS) tissue, suggesting a potential role for parainfectious processes, including neuroimmune responses. We therefore examined immune parameters in cerebrospinal fluid (CSF) and blood samples from a cohort of patients with COVID-19 and significant neurological complications. We found divergent immunological responses in the CNS compartment, including increased levels of IL-12 and IL-12-associated innate and adaptive immune cell activation. Moreover, we found increased proportions of B cells in the CSF relative to the periphery and evidence of clonal expansion of CSF B cells, suggesting a divergent intrathecal humoral response to SARS-CoV-2. Indeed, all COVID-19 cases examined had anti-SARS-CoV-2 IgG antibodies in the CSF whose target epitopes diverged from serum antibodies. We directly examined whether CSF resident antibodies target self-antigens and found a significant burden of CNS autoimmunity, with the CSF from most patients recognizing neural self-antigens. Finally, we produced a panel of monoclonal antibodies from patients CSF and show that these target both anti-viral and anti-neural antigens--including one mAb specific for the spike protein that also recognizes neural tissue. This exploratory immune survey reveals evidence of a compartmentalized and self-reactive immune response in the CNS meriting a more systematic evaluation of neurologically impaired COVID-19 patients. One Sentence SummaryA subset of COVID-19 patients with neurologic impairment show cerebrospinal fluid-specific immune alterations that point to both neuroinvasion and anti-neural autoimmunity as potential causes of impairment.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20175299

RESUMO

As COVID-19 continues to spread across the globe, the need for inexpensive, large-scale prevalence surveillance testing increases. We present a method for testing newborn dried blood spots (DBS) for anti-SARS-COV-2 IgG antibodies, and demonstrate its applicability as an easily accessible proxy for measuring maternal seroprevalence.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-169946

RESUMO

Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus whether the virus can infect the brain, or what the consequences of CNS infection are. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in the infected and neighboring neurons. However, no evidence for the type I interferon responses was detected. We demonstrate that neuronal infection can be prevented either by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate in vivo that SARS-CoV-2 neuroinvasion, but not respiratory infection, is associated with mortality. Finally, in brain autopsy from patients who died of COVID-19, we detect SARS-CoV-2 in the cortical neurons, and note pathologic features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV2, and an unexpected consequence of direct infection of neurons by SARS-CoV-2.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20123414

RESUMO

A growing body of evidence indicates sex differences in the clinical outcomes of coronavirus disease 2019 (COVID-19)1-4. However, whether immune responses against SARS-CoV-2 differ between sexes, and whether such differences explain male susceptibility to COVID-19, is currently unknown. In this study, we examined sex differences in viral loads, SARS-CoV-2-specific antibody titers, plasma cytokines, as well as blood cell phenotyping in COVID-19 patients. By focusing our analysis on patients with mild to moderate disease who had not received immunomodulatory medications, our results revealed that male patients had higher plasma levels of innate immune cytokines and chemokines including IL-8, IL-18, and CCL5, along with more robust induction of non-classical monocytes. In contrast, female patients mounted significantly more robust T cell activation than male patients during SARS-CoV-2 infection, which was sustained in old age. Importantly, we found that a poor T cell response negatively correlated with patients age and was predictive of worse disease outcome in male patients, but not in female patients. Conversely, higher innate immune cytokines in female patients associated with worse disease progression, but not in male patients. These findings reveal a possible explanation underlying observed sex biases in COVID-19, and provide important basis for the development of sex-based approach to the treatment and care of men and women with COVID-19.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20118554

RESUMO

Effective public-health measures and vaccination campaigns against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against the ectodomain and the receptor-binding domain of the spike protein as well as the nucleocapsid protein of SARS-CoV-2. We used TRABI for continuous seromonitoring of hospital patients and healthy blood donors (n=72222) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period). Seroprevalence peaked in May 2020 and rose again in November 2020 in both cohorts. Validations of results included antibody diffusional sizing and Western Blotting. Using an extended Susceptible-Exposed-Infectious-Removed model, we found that antibodies waned with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in mid-December 2020 in the population of the canton of Zurich. A follow-up health survey indicated that about 10% of patients infected with wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19 and up to the timepoint of survey participation. Crucially, we found no evidence for a difference in long-term complications between those whose infection was symptomatic and those with asymptomatic acute infection. The cohort of asymptomatic SARS-CoV-2- infected subjects represents a resource for the study of chronic and possibly unexpected sequelae.

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-118893

RESUMO

Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-Cov-2) has caused over 5,000,000 cases of Coronavirus disease (COVID-19) with significant fatality rate.1-3 Due to the urgency of this global pandemic, numerous therapeutic and vaccine trials have begun without customary safety and efficacy studies.4 Laboratory mice have been the stalwart of these types of studies; however, they do not support infection by SARS-CoV-2 due to the inability of its spike (S) protein to engage the mouse ortholog of its human entry receptor angiotensin-converting enzyme 2 (hACE2). While hACE2 transgenic mice support infection and pathogenesis,5 these mice are currently limited in availability and are restricted to a single genetic background. Here we report the development of a mouse model of SARS-CoV-2 based on adeno associated virus (AAV)-mediated expression of hACE2. These mice support viral replication and antibody production and exhibit pathologic findings found in COVID-19 patients as well as non-human primate models. Moreover, we show that type I interferons are unable to control SARS-CoV2 replication and drive pathologic responses. Thus, the hACE2-AAV mouse model enables rapid deployment for in-depth analysis following robust SARS-CoV-2 infection with authentic patient-derived virus in mice of diverse genetic backgrounds. This represents a much-needed platform for rapidly testing prophylactic and therapeutic strategies to combat COVID-19.

12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20083907

RESUMO

BackgroundThe effects of Covid-19 in pregnancy remain relatively unknown. We present a case of second trimester pregnancy with symptomatic Covid-19 complicated by severe preeclampsia and placental abruption. MethodsWe analyzed placenta for the presence of SARS-CoV-2 through molecular and immunohistochemical assays and by and electron microscopy, and we measured the maternal antibody response in blood to this infection. ResultsSARS-CoV-2 localized predominantly to syncytiotrophoblast cells at the maternal-fetal interface of the placenta. Histological examination of the placenta revealed a dense macrophage infiltrate, but no evidence for vasculopathy typically associated with preeclampsia. ConclusionThis case demonstrates, for the first time, SARS-CoV-2 invasion of the placenta, highlighting the potential for severe morbidity among pregnant women with Covid-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...