Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Clin Pharm ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814512

RESUMO

BACKGROUND: Tacrolimus is a critical component of immunosuppressive therapy for kidney transplant recipients. Intra-patient variation (IPV) of tacrolimus levels affects the function of transplanted kidney. AIM: This study aimed to investigate the impact of tacrolimus IPV on kidney function, examine its association with post-transplant duration, and assess its effect on the immune status of transplant recipients. METHOD: This retrospective study was conducted from January 2016 to February 2022. IPV was evaluated using the coefficient of variation (CV) of tacrolimus trough levels from 6 to 48 months after transplantation. Patients were divided into low- and high-IPV groups based on the median CV. Significant differences in kidney function, CD4 + /CD8 + ratio, and post-transplant duration between these groups were analyzed. RESULTS: Among 189 patients, tacrolimus IPV showed a strong correlation with serum creatinine clearance rate (Ccr) and estimated glomerular filtration rate (eGFR) (p < 0.05). Tacrolimus IPV was significantly correlated with post-transplant duration in only two patients (p < 0.05). Using a median CV of 15.4% to categorize patients, the high IPV group, compared to the low IPV group, exhibited significantly higher eGFR at 6-9 months (p < 0.05), lower Ccr at 9-12 months (p < 0.05), and reduced Ccr and eGFR at 15-18 months (p < 0.05). Six months after transplantation, the high IPV group had a significantly lower CD4 + /CD8 + ratio than the low IPV group (p < 0.05). CONCLUSION: This study highlights the significant impact of tacrolimus IPV on transplant kidney function and immune status in transplant patients at various post-transplantation intervals.

2.
Viruses ; 16(5)2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793641

RESUMO

Acinetobacter baumannii has developed multiple drug resistances, posing a significant threat to antibiotic efficacy. LysECD7, an endolysin derived from phages, could be a promising therapeutic agent against multi-drug resistance A. baumannii. In this study, in order to further enhance the antibacterial efficiency of the engineered LysECD7, a few lipopolysaccharide-interacting peptides (Li5, MSI594 and Li5-MSI) were genetically fused with LysECD7. Based on in vitro antibacterial activity, the fusion protein Lys-Li5-MSI was selected for further modifications aimed at extending its half-life. A cysteine residue was introduced into Lys-Li5-MSI through mutation (Lys-Li5-MSIV12C), followed by conjugation with a C16 fatty acid chain via a protonation substitution reaction(V12C-C16). The pharmacokinetic profile of V12C-C16 exhibited a more favorable characteristic in comparison to Lys-Li5-MSI, thereby resulting in enhanced therapeutic efficacy against lethal A. baumannii infection in mice. The study provides valuable insights for the development of novel endolysin therapeutics and proposes an alternative therapeutic strategy for combating A. baumannii infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Endopeptidases , Lipopolissacarídeos , Acinetobacter baumannii/efeitos dos fármacos , Animais , Endopeptidases/farmacologia , Endopeptidases/metabolismo , Endopeptidases/química , Endopeptidases/genética , Camundongos , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Lipopolissacarídeos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Peptídeos/química , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Feminino , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
3.
Bioconjug Chem ; 35(5): 653-664, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593046

RESUMO

Disorder of complement response is a significant pathogenic factor causing some autoimmune and inflammation diseases. The Ornithodoros moubata Complement Inhibitor (OmCI), a small 17 kDa natural protein, was initially extracted from soft tick salivary glands. The protein was found binding to complement C5 specifically, inhibiting the activation of the complement pathway, which is a successful therapeutic basis of complement-mediated diseases. However, a short half-life due to rapid renal clearance is a common limitation of small proteins for clinical application. In this study, we extended the half-life of OmCI by modifying it with fatty acid, which was a method used to improve the pharmacokinetics of native peptides and proteins. Five OmCI mutants were initially designed, and single-site cysteine mutation was introduced to each of them. After purification, four OmCI mutants were obtained that showed similar in vitro biological activities. Three mutants of them were subsequently coupled with different fatty acids by nucleophilic substitution. In total, 15 modified derivatives were screened and tested for anticomplement activity in vitro. The results showed that coupling with fatty acid would not significantly affect their complement-inhibitory activity (CH50 and AH50). OmCIT90C-CM02 and OmCIT90C-CM05 were validated as the applicable OmCI bioconjugates for further pharmacokinetic assessments, and both showed improved plasma half-life in mice compared with unmodified OmCI (15.86, 17.96 vs 2.57 h). In summary, our data demonstrated that OmCI conjugated with fatty acid could be developed as the potential long-acting C5 complement inhibitor in the clinic.


Assuntos
Complemento C5 , Ácidos Graxos , Ornithodoros , Animais , Ácidos Graxos/química , Camundongos , Complemento C5/antagonistas & inibidores , Desenho de Fármacos , Meia-Vida , Proteínas Inativadoras do Complemento/farmacologia , Proteínas Inativadoras do Complemento/química , Inativadores do Complemento/farmacologia , Inativadores do Complemento/farmacocinética , Inativadores do Complemento/química , Humanos
4.
Sci Total Environ ; 921: 171211, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408658

RESUMO

Intense warming profoundly alters precipitation phase patterns and intensity in High Mountain Asia (HMA). While snowfall climatology and precipitation extremes have been studied, there is a lack of understanding of snowfall extremes within HMA. Here, we investigate the spatial and temporal variability of non-extreme and extreme snowfall in hydrological years 1979-2020 using multi-source meteorological data, compare weather systems during extreme and non-extreme snowfall events, and identify key circulation factors that influence fluctuations in mean annual snowfall and extreme snowfall. The snowfall amount (-0.13 d/mm), days (-0.56 d/a), and fraction (-0.0012) were significantly reduced in HMA, with a shorter snowfall season (-0.52 d/a). Some extreme snowfall metrics (maximum 1-day snowfall and maximum 3-day snowfall) were insensitive to climate change, whereas the maximum consecutive snowfall days (-0.007 d/a), snowfall amount (-0.0023 mm/a), heavy snowfall days (S95pD; 0.0087 d/a), and extremely heavy snowfall days (S99pD; -0.1019 d/a) showed significant decreases. Synthetic analyses show that extreme snowfall events were more likely to occur within a narrow temperature range (-5 °C to 3 °C) with higher relative humidity and precipitation compared to non-extreme events. A stepwise regression method was used to determine that the fluctuation in the average annual snowfall was closely related to the Atlantic Multidecadal Oscillation, whereas the variation in extreme snowfall was mainly influenced by the Southern Oscillation Index. Our research provides a reference for assessing the potential impacts of climate change on a regional scale for risk management and disaster adaptation.

5.
Sci Total Environ ; 921: 170913, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354818

RESUMO

Meteorological drought is a crucial driver of various types of droughts; thus, identifying the spatiotemporal characteristics of meteorological drought at the basin scale has implications for ecological and water resource security. However, differences in drought characteristics between river basins have not been clearly elucidated. In this study, we identify and compare meteorological drought events in 34 major river basins worldwide using a three-dimensional drought-clustering algorithm based on the standardised precipitation evapotranspiration index on a 12-month scale from 1901 to 2021. Despite synchronous increases in precipitation and potential evapotranspiration (PET), with precipitation increasing by more than three times the PET, 47 % (16/34) of the basins showed a tendency towards drought in over half their basin areas. Drought events occurred frequently, with more than half identified as short-term droughts (lasting less than or equal to three months). Small basins had a larger drought impact area, with major drought events often originating from the basin boundaries and migrating towards the basin centre. Meteorological droughts were driven by changes in sea surface temperature (SST), especially the El Niño Southern Oscillation (ENSO) or other climate indices. Anomalies in SST and atmospheric circulation caused by ENSO events may have led to altered climate patterns in different basins, resulting in drought events. These results provide important insights into the characteristics and mechanisms of meteorological droughts in different river basins worldwide.

6.
Emerg Microbes Infect ; 13(1): 2294854, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38085067

RESUMO

ABSTRACTNew Delhi metallo-ß-lactamase-1 (NDM-1) has rapidly disseminated worldwide, leading to multidrug resistance and worse clinical prognosis. Designing and developing effective NDM-1 inhibitors is a critical and urgent challenge. In this study, we constructed a library of long-lasting nitroxoline derivatives and identified ASN-1733 as a promising dual-functional antibiotic. ASN-1733 can effectively compete for Ca2+ on the bacterial surface, causing the detachment of lipopolysaccharides (LPS), thereby compromising the outer membrane integrity and permeability and exhibiting broad-spectrum bactericidal activity. Moreover, ASN-1733 demonstrated wider therapeutic applications than nitroxoline in mouse sepsis, thigh and mild abdominal infections. Furthermore, ASN-1733 can effectively inhibit the hydrolytic capability of NDM-1 and exhibits synergistic killing effects in combination with meropenem against NDM-1 positive bacteria. Mechanistic studies using enzymatic experiments and computer simulations revealed that ASN-1733 can bind to key residues on Loop10 of NDM-1, hindering substrate entry into the enzyme's active site and achieving potent inhibitory activity (Ki = 0.22 µM), even in the presence of excessive Zn2+. These findings elucidate the antibacterial mechanism of nitroxoline and its derivatives, expand their potential application in the field of antibacterial agents and provide new insights into the development of novel NDM-1 inhibitors.


Assuntos
Infecções Bacterianas , Nitroquinolinas , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Meropeném/farmacologia , Nitroquinolinas/farmacologia , beta-Lactamases/metabolismo , Bactérias , Testes de Sensibilidade Microbiana
7.
J Drug Target ; 31(10): 1098-1110, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909691

RESUMO

Backgroud: Breast cancer is a prevalent malignancy among women, with triple-negative breast cancer (TNBC) comprising approximately 15-20% of all cases, possessing high invasiveness, drug resistance and poor prognosis. Chemotherapy, the main treatment for TNBC, is limited by toxicity and drug resistance. Apolipoprotein A1 modified doxorubicin liposome (ApoA1-lip/Dox) was constructed in our previous study, with promising anti-tumour effect and improved safety been proved. However, during long-term administration, the problem of cumulative toxicity and insufficient tumour inhibition is still inevitable. Interleukin-21 is a small molecule protein secreted by T cells with various immune regulatory functions. IL-21 has significantly curative effects in numerous solid tumours, but it has the disadvantages of low response rate and short half-life. The combination of chemotherapy and immunotherapy has received increasing attention.Purpose: In this study, ApoA1 drug loading system and long-acting IL-21 are innovatively combined for tumour treatment.Methods: We combined ApoA1-lip/Dox and IL-21 for treatment and evaluated their impact on tumor-infiltrating lymphocytes and CD8+ T and NK cell cytotoxicity.Results: Combined administration significantly improved the tumour-infiltrating lymphocytes and enhanced the cytotoxicity of CD8+ T and NK cells. The combination of ApoA1-lip/Dox and IL-21 exhibits significantly enhanced anti-tumour efficacy with lower toxicity of ApoA1-lip/Dox, providing a new strategy for TNBC treatment with enhanced anti-tumour response and reduced toxicity.


Assuntos
Lipossomos , Neoplasias de Mama Triplo Negativas , Camundongos , Feminino , Humanos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Apolipoproteína A-I/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Imunoterapia , Linhagem Celular Tumoral
8.
Appl Microbiol Biotechnol ; 107(18): 5701-5714, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37480372

RESUMO

Staurosporine is the most well-known member of the indolocarbazole alkaloid family; it can induce apoptosis of many types of cells as a strong protein kinase inhibitor, and is used as an important lead compound for the synthesis of the antitumor drugs. However, the low fermentation level of the native producer remains the bottleneck of staurosporine production. Herein, integration of multi-copy biosynthetic gene cluster (BGC) in well characterized heterologous host and optimization of the fermentation process were performed to enable high-level production of staurosporine. First, the 22.5 kb staurosporine BGC was captured by CRISPR/Cas9-mediated TAR (transformation-associated recombination) from the native producer (145 mg/L), and then introduced into three heterologous hosts Streptomyces avermitilis (ATCC 31267), Streptomyces lividans TK24 and Streptomyces albus J1074 to evaluate the staurosporine production capacity. The highest yield was achieved in S. albus J1074 (750 mg/L), which was used for further production improvement. Next, we integrated two additional staurosporine BGCs into the chromosome of strain S-STA via two different attB sites (vwb and TG1), leading to a double increase in the production of staurosporine. And finally, optimization of fermentation process by controlling the pH and glucose feeding could improve the yield of staurosporine to 4568 mg/L, which was approximately 30-fold higher than that of the native producer. This is the highest yield ever reported, paving the way for the industrial production of staurosporine. KEYPOINTS: • Streptomyces albus J1074 was the most suitable heterologous host to express the biosynthetic gene cluster of staurosporine. • Amplification of the biosynthetic gene cluster had obvious effect on improving the production of staurosporine. • The highest yield of staurosporine was achieved to 4568 mg/L by stepwise increase strategy.


Assuntos
Inibidores de Proteínas Quinases , Streptomyces griseus , Estaurosporina , Fermentação , Apoptose
9.
J Antibiot (Tokyo) ; 76(5): 260-269, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36941353

RESUMO

The escalating crisis of multidrug resistance is raising the fear of untreatable Gram-negative infections and killing a substantial number of patients. The underpopulated antibiotic drug development pipelines drive polymyxins (polymyxin B and colistin) as crucial therapeutic options. However, the cumbersome synthesis process and inefficient cyclization method limit the efficient preparation of polymyxin core scaffolds in the development of polymyxin derivatives. Here, we innovatively applied a substitution reaction between bromobenzene and sulfhydryl to cyclize colistin core scaffolds. The reaction was mild and efficient, improving the total yield of the compound from less than 10% to 55.90%. Nearly 30 novel derivatives with thioether bond-mediated cyclic scaffolds were designed and synthesized. Evaluation of antibacterial activities and biological properties revealed that many new compounds that are stable in mouse plasma possess high antimicrobial potency against Gram-negative bacteria and display no hemolytic toxicity. Our optimal peptide PE-2C-C8-DH eradicated Acinetobacter baumannii within 24 h in vitro, and had lower acute toxicity and significant therapeutic effects on mice infected with Pseudomonas aeruginosa, which deserves further development.


Assuntos
Colistina , Farmacorresistência Bacteriana Múltipla , Animais , Camundongos , Colistina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Polimixina B/farmacologia , Polimixinas/farmacologia , Testes de Sensibilidade Microbiana
10.
Infect Drug Resist ; 16: 1019-1028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845018

RESUMO

Introduction: LYSC98 is a novel vancomycin derivative used for gram-positive bacterial infections. Here we compared the antibacterial activity of LYSC98 with vancomycin and linezolid in vitro and in vivo. Besides, we also reported the pharmacokinetic/pharmacodynamic (PK/PD) index and efficacy-target values of LYSC98. Methods: The MIC values of LYSC98 were identified through broth microdilution method. A mice sepsis model was established to investigate the protective effect of LYSC98 in vivo. Single-dose pharmacokinetics of LYSC98 was studied in thigh-infected mice and liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was used to determine LYSC98 concentration in plasma. Dose fractionation studies were performed to evaluate different PK/PD indices. Two methicillin-resistant Staphylococcus aureus (MRSA) clinical strains were used in the dose ranging studies to determine the efficacy-target values. Results: LYSC98 showed a universal antibacterial effect in Staphylococcus aureus with a MIC range of 2-4 µg/mL. In vivo, LYSC98 demonstrated distinctive mortality protection in mice sepsis model with an ED50 value of 0.41-1.86 mg/kg. The pharmacokinetics results displayed maximum plasma concentration (Cmax) 11,466.67-48,866.67 ng/mL, area under the concentration-time curve from 0 to 24 h (AUC0-24) 14,788.42-91,885.93 ng/mL·h, and elimination half-life (T1/2) 1.70-2.64 h, respectively. Cmax/MIC (R 2 0.8941) was proved to be the most suitable PK/PD index for LYSC98 to predict its antibacterial efficacy. The magnitude of LYSC98 Cmax/MIC associated with net stasis, 1, 2, 3 and 4 - log 10 kill were 5.78, 8.17, 11.14, 15.85 and 30.58, respectively. Conclusion: Our study demonstrates that LYSC98 is more effective than vancomycin either in killing vancomycin-resistant Staphylococcus aureus (VRSA) in vitro or treating S. aureus infections in vivo, making it a novel and promising antibiotic. The PK/PD analysis will also contribute to the LYSC98 Phase I dose design.

11.
J Agric Food Chem ; 71(1): 671-679, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36571834

RESUMO

Ergothioneine (ERG) is an unusual sulfur-containing amino acid with antioxidant activity that can be synthesized by certain bacteria and fungi. Microbial fermentation is a promising method for ERG production. In this study, the bifunctional enzyme methyltransferase-sulfoxide synthase NcEgt1 from Neurospora crassa was truncated to obtain sulfoxide synthase TNcEgt1, which showed a higher expression level in Escherichia coli BL21(DE3). Then, the genes egtD encoding methyltransferase EgtD and egtE encoding C-S lyase EgtE from Mycobacterium smegmatis were cloned with TncEgt1 into E. coli BL21(DE3) to produce 70 mg/L ERG. To improve ERG production, TNcEgt1 and EgtD were modified, and the resulting mutants were screened with an established high-throughput method which could directly analyze the ERG content in culture broths. After several rounds of mutation and screening, the optimal mutant MD4 was obtained and produced 290 mg/L ERG. Furthermore, a fed-batch culture was conducted in a 5 L bioreactor. After optimizing the fermentation process, the ERG yield reached 5.4 g/L after 94 h of cultivation supplemented with amino acids and glycerol, which is the highest ERG yield reported to date. The results showed that ERG production was significantly improved by modifying the key enzymes, and the engineered strains constructed in this study have potential industrial application prospects.


Assuntos
Ergotioneína , Antioxidantes/metabolismo , Bactérias/genética , Ergotioneína/química , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica , Metiltransferases/metabolismo
12.
Metabolites ; 12(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36295794

RESUMO

The disturbance in gut microbiota composition and metabolism has been implicated in the process of pathogenic bacteria infection. However, the characteristics of the microbiota and the metabolic interaction of commensals−host during pathogen invasion remain more than vague. In this study, the potential associations of gut microbes with disturbed lipid metabolism in mice upon carbapenem-resistant Escherichia coli (CRE) infection were explored by the biochemical and multi-omics approaches including metagenomics, metabolomics and lipidomics, and then the key metabolites−reaction−enzyme−gene interaction network was constructed. Results showed that intestinal Erysipelotrichaceae family was strongly associated with the hepatic total cholesterol and HDL-cholesterol, as well as a few sera and fecal metabolites involved in lipid metabolism such as 24, 25-dihydrolanosterol. A high-coverage lipidomic analysis further demonstrated that a total of 529 lipid molecules was significantly enriched and 520 were depleted in the liver of mice infected with CRE. Among them, 35 lipid species showed high correlations (|r| > 0.8 and p < 0.05) with the Erysipelotrichaceae family, including phosphatidylglycerol (42:2), phosphatidylglycerol (42:3), phosphatidylglycerol (38:5), phosphatidylcholine (42:4), ceramide (d17:1/16:0), ceramide (d18:1/16:0) and diacylglycerol (20:2), with correlation coefficients higher than 0.9. In conclusion, the systematic multi-omics study improved the understanding of the complicated connection between the microbiota and the host during pathogen invasion, which thereby is expected to lead to the future discovery and establishment of novel control strategies for CRE infection.

13.
Front Immunol ; 13: 947756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003387

RESUMO

Immunotherapy especially immune checkpoint inhibitors (ICIs) has brought favorable clinical results for numerous cancer patients. However, the efficacy of ICIs in colorectal cancer (CRC) is still unsatisfactory due to the poor median progression-free survival and overall survival. Here, based on the CRC models, we tried to elucidate novel relapse mechanisms during anti-PD-1 therapy. We found that PD-1 blockade elicited a mild antitumor effect in these tumor models with both increased CD8+ T cells and Treg cells. Gene mapping analysis indicated that proprotein convertase subtilisin/kexin type 9 (PCSK9), low-density lipoprotein receptor, transforming growth factor-ß (TGF-ß), and CD36 were unexpectedly upregulated during PD-1 blockade. To investigate the critical role of these proteins especially PCSK9 in tumor growth, anti-PCSK9 antibody in combination with anti-PD-1 antibody was employed to block PCSK9 and PD-1 simultaneously in CRC. Data showed that neutralizing PCSK9 during anti-PD-1 therapy elicited a synergetic antitumor effect with increased CD8+ T-cell infiltration and inflammatory cytokine releases. Moreover, the proportion of Treg cells was significantly reduced by co-inhibiting PCSK9 and PD-1. Overall, inhibiting PCSK9 can further enhance the antitumor effect of anti-PD-1 therapy in CRC, indicating that targeting PCSK9 could be a promising approach to potentiate ICI efficacy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Inibidores de PCSK9 , Pró-Proteína Convertase 9/metabolismo , Linfócitos T Reguladores
14.
J Pharm Biomed Anal ; 215: 114770, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35489247

RESUMO

Increasing evidence highlighted the metabolic associations between host and gut microbiota during infection. However, how host-gut microbiota metabolic partnership response to carbapenem-resistant Escherichia coli (CRE) infection has yet to be elucidated. In this study, we subjected the mice to a single intraperitoneal injection of CRE and studied the alterations of the small molecule metabolites derived from host-microbial co-metabolism, as well as the gut microbiome in mice, at 24 h after infection by a two-level strategy. A panel of metabolites in feces and serum, were found to alter significantly in the CRE group, including 26 joint metabolites between them. Meanwhile, the relative abundance of 14 OTUs in Firmicutes (10 OTU), Bacteroidetes (2 OTU), Actinomycetes (1 OTU), and Proteobacteria (1 OTU) were observed to change after infection. Association analyses demonstrated that 9 OTUs including six in the Firmicutes phylum, two in the Bacteroidetes phylum, and one in the Actinomycetes phylum, were associated with the changes of 49 fecal metabolites and 42 serum metabolites. The study of gut microbiota-host metabolic interactions in the early stage of the infection is expected to provide novel diagnostic methods and therapeutic strategies for CRE infection, bring innovative solutions to resolve the current challenge.


Assuntos
Infecções por Escherichia coli , Microbioma Gastrointestinal , Animais , Carbapenêmicos/farmacologia , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Fezes/microbiologia , Metaboloma , Camundongos , RNA Ribossômico 16S
15.
Adv Drug Deliv Rev ; 183: 114171, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189264

RESUMO

Antimicrobial resistance is a major global health challenge. As few new efficacious antibiotics will become available in the near future, peptide antibiotics continue to be major therapeutic options for treating infections caused by multidrug-resistant pathogens. Rational use of antibiotics requires optimisation of the pharmacokinetics and pharmacodynamics for the treatment of different types of infections. Toxicodynamics must also be considered to improve the safety of antibiotic use and, where appropriate, to guide therapeutic drug monitoring. This review focuses on the pharmacokinetics/pharmacodynamics/toxicodynamics of peptide antibiotics against multidrug-resistant Gram-negative and Gram-positive pathogens. Optimising antibiotic exposure at the infection site is essential for improving their efficacy and minimising emergence of resistance.


Assuntos
Antibacterianos , Monitoramento de Medicamentos , Antibacterianos/farmacocinética , Farmacorresistência Bacteriana Múltipla , Humanos , Peptídeos/farmacologia
16.
Int Immunopharmacol ; 101(Pt A): 108307, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34735918

RESUMO

Interleukin-21 (IL-21) has exhibited anti-tumor activity in preclinical and clinical studies; however, its modest efficacy and short half-time has limited its therapeutic utility as a monotherapy. Therefore, we engineered a fusion protein (IL-21-αHSA) in which a nanobody targeting human serum albumin (HSA) was fused to the C-terminus of rhIL-21. The αHSA nanobody displayed broad species cross-reactivity and bound to a HSA epitope that does not overlap with the FcRn binding site, thus providing a strategic design for half-life extension. The IL-21-αHSA fusion protein showed increased stability compared to rhIL-21, while retaining its bioactivity in a liquid solution for at least 6 months. Moreover, IL-21-αHSA showed a dramatically extended half-life and prolonged exposure in cynomolgus monkeys, with the t1/2 and AUC nearly 10 and 50 times greater than that of rhIL-21, respectively. Furthermore, IL-21-αHSA displayed enhanced anti-tumor efficacy in two syngeneic mouse models. Notably, IL-21-αHSA increased the anti-tumor effect of programmed cell death protein 1 (PD-1) and T cell immunoglobulin and ITIM domain (TIGIT) blockades when used in combination, with a protection against tumor rechallenge, suggesting the formation of long-term anti-tumor memory response. KEGG analysis identified significantly enriched pathways associated with anti-tumor immune response, with increased expression of genes associated with CD8+ T and NK cell cytotoxicity. Overall, these data support further clinical evaluation of IL-21-αHSA as a monotherapy or in combination with immune checkpoint blockades.


Assuntos
Antineoplásicos/uso terapêutico , Interleucinas/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores Imunológicos/antagonistas & inibidores , Albuminas , Animais , Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Feminino , Meia-Vida , Interleucinas/administração & dosagem , Interleucinas/farmacocinética , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Proteínas Recombinantes
17.
J Biol Chem ; 297(6): 101420, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34798072

RESUMO

Activation of the programmed cell death protein 1 and programmed cell death ligand 1 (PD-1/PD-L1) signaling axis plays important roles in intrinsic or acquired resistance to human epidermal growth factor receptor 2 (HER2)-directed therapies in the clinic. Therefore, therapies simultaneously targeting both HER2 and PD-1/PD-L1 signaling pathways are of great significance. Here, aiming to direct the anti-PD-L1 responses toward HER2-expressing tumor cells, we constructed a humanized bispecific IgG1 subclass antibody targeting both HER2 and PD-L1 (HER2/PD-L1; BsAb), which displayed satisfactory purity, thermostability, and serum stability. We found that BsAb showed enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) activity in vitro. In the late phase of peripheral blood mononuclear cell (PBMC)-humanized HER2+ tumor xenograft models, BsAb showed superior therapeutic efficacies as compared with monoclonal antibodies (mAbs) or combination treatment strategies. In cynomolgus monkeys, BsAb showed favorable pharmacokinetics and toxicity profiles when administered at a 10 mg/kg dosage. Thus, HER2/PD-L1 BsAb was demonstrated as a potentially effective option for managing HER2+ and trastuzumab-resistant tumors in the clinic. We propose that the enhanced antitumor activities of BsAb in vivo may be due to direct inhibition of HER2 signaling or activation of T cells.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais Murinos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Animais , Citotoxicidade Celular Dependente de Anticorpos , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias Experimentais/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor ErbB-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
BMC Genomics ; 22(1): 530, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34247587

RESUMO

BACKGROUND: Acinetobacter baumannii is a common nosocomial pathogen that poses a huge threat to global health. Owing to the severity of A. baumannii infections, it became necessary to investigate the epidemiological characteristics of A. baumannii in Chinese hospitals and find the reasons for the high antibiotic resistance rate and mortality. This study aimed to investigate the epidemiologic and genetic characteristics of A. baumannii isolated from patients with hospital acquired pneumonia (HAP), bloodstream infection (BSI) and urinary tract infection (UTI) in China and uncover potential mechanisms for multi-drug resistance and virulence characteristics of A. baumannii isolates. RESULTS: All isolates were classified into two primary clades in core gene-based phylogenetic relationship. Clonal complex 208 (CC208) mainly consisted of ST195 (32 %) and ST208 (24.6 %). CC208 and non-CC208 isolates had carbapenem resistance rates of 96.2 and 9.1 %, respectively. Core genes were enriched in 'Amino acid transport and metabolism', 'Translation', 'Energy production and conversion', 'Transcription', 'Inorganic ion transport and metabolism' and 'Cell wall/membrane/envelope synthesis'. Most isolates possessed virulence factors related to polysaccharide biosynthesis, capsular polysaccharide synthesis and motility. Eleven isolates belong to ST369 or ST191 (oxford scheme) all had the virulence factor cap8E and it had a higher positive rate in UTI (35.3 %) than in BSI (18.9 %) and HAP (12.9 %). ABGRI1 antibiotic resistance islands were responsible for streptomycin, tetracycline and sulfonate resistance. The blaOXA-23 gene was the most probable cause for carbapenem resistance, although the blaOXA-66 gene with nonsynonymous SNPs (F82L, I129L) was not. CONCLUSIONS: A. baumannii is a genomically variable pathogen that has the potential to cause a range of infectious diseases. There is high proportion of carbapenem resistance in isolates from all three infection sites (HAP, BSI and UTI), which can be attributed to the blaOXA-23 gene. CC208 is the predominant clone in blaOXA-23-carrying A. baumannii that should be monitored. Virulence factors involving bacteria motility and polysaccharide biosynthesis which are widespread in clinical A. baumannii strains deserve our attention.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Doenças Transmissíveis , Infecções por Acinetobacter/epidemiologia , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , China/epidemiologia , Farmacorresistência Bacteriana Múltipla , Genômica , Humanos , Testes de Sensibilidade Microbiana , Filogenia , beta-Lactamases/genética
20.
Front Pharmacol ; 12: 658558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017256

RESUMO

Nemonoxacin, a novel nonfluorinated quinolone for the treatment of community-acquired pneumonia. We reported the pharmacokinetic/pharmacodynamic (PK/PD) targets and PK/PD breakpoints of nemonoxacin against Streptococcus pneumoniae using a neutropenic murine lung infection model. Single-dose PK analysis after subcutaneous administration of nemonoxacin at doses from 2.5 to 80 mg/kg showed maximum plasma concentration (Cmax) 0.56-7.32 mg/L, area under the concentration-time curve from 0 to 24 h (AUC0-24) 0.67-26.10 mg·h/L, and elimination half-life (T1/2) 0.8-1.4 h. The epithelial lining fluid (ELF) penetration ratio of total drug was 1.40. Dose fractionation (1.25-80 mg/kg/day, every 24, 12, 8, and 6 h) and dose escalation studies (1.25-160 mg/kg, every 24 h) were conducted. The sigmoid Emax Hill equation was used to describe the dose-response data. The free-drug plasma fAUC0-24/MIC ratio was considered the PK/PD index most closely associated with efficacy (R2 0.9268). Median fAUC0-24/MIC associated with static, 1-log10 and 2-log10 CFU reduction from baseline were 8.6, 23.2 and 44.4, respectively. Monte Carlo simulation showed 500 mg qd and 750 mg qd oral doses of nemonoxacin were able to achieve 90% probability of target attainment (PTA) against bacteria with MIC of 0.5 mg/L and 1 mg/L. We recommended susceptibility (S) ≤ 0.5 mg/L, intermediate (I) = 1 mg/L and resistant (R) ≥ 2 mg/L as the PK/PD breakpoints for nemonoxacin against S. pneumoniae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...