Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Mali Med ; 37(2): 17-21, 2022 07 08.
Artigo em Francês | MEDLINE | ID: mdl-36945313

RESUMO

Background: Progressive Myoclonic Epilepsy (PME) is a heterogeneous group of pathologies associating epileptic seizures and other neurological and non-neurological disorders. Objectives: We aim to characterize patients with symptoms of PME and identify the underlying genetic disorder. Methods: After informed consent, the patients seen in the protocol for hereditary neurological diseases and presenting signs of epilepsy without a secondary cause were clinically evaluated over a three-year period in the Department of Neurology of the CHU Point "G". EEG, brain imaging and laboratory tests were performed to consolidate our diagnosis. DNA was extracted for genetic analysis. Results: 141 families including five families with PME totaling eight cases were enrolled. The predominant symptoms in our patients were myoclonus in 87.5% (N = 8), followed by GTCS and cognitive impairment in 50%, each. A notion of parental consanguinity was found in 60% and autosomal recessive transmission evoked in 80% (N = 5). The EEG was pathological in 62.5% and imaging showed ponto-cerebellar atrophy in 25% (N = 8). The combination of sodium valproate and clonazepam was the main treatment. One case of death was recorded. Conclusion: We report cases of PME in Mali with a possibility of discovering new genes.


Assuntos
Epilepsia , Epilepsias Mioclônicas Progressivas , Neurologia , Síndrome de Unverricht-Lundborg , Humanos , Universidades , Epilepsias Mioclônicas Progressivas/diagnóstico , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas Progressivas/complicações , Epilepsia/complicações , Síndrome de Unverricht-Lundborg/complicações , Hospitais de Ensino
2.
Gene Ther ; 23(5): 424-37, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26863047

RESUMO

Numerous gene and cell therapy strategies are being developed for the treatment of neurodegenerative disorders. Many of these strategies use constitutive expression of therapeutic transgenic proteins, and although functional in animal models of disease, this method is less likely to provide adequate flexibility for delivering therapy to humans. Ligand-inducible gene expression systems may be more appropriate for these conditions, especially within the central nervous system (CNS). Mifepristone's ability to cross the blood-brain barrier makes it an especially attractive ligand for this purpose. We describe the production of a mifepristone-inducible vector system for regulated expression of transgenes within the CNS. Our inducible system used a lentivirus-based vector platform for the ex vivo production of mifepristone-inducible murine neural progenitor cells that express our transgenes of interest. These cells were processed through a series of selection steps to ensure that the cells exhibited appropriate transgene expression in a dose-dependent and temporally controlled manner with minimal background activity. Inducible cells were then transplanted into the brains of rodents, where they exhibited appropriate mifepristone-inducible expression. These studies detail a strategy for regulated expression in the CNS for use in the development of safe and efficient gene therapy for neurological disorders.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Células-Tronco Neurais/transplante , Doenças Neurodegenerativas/terapia , Transplante de Células-Tronco , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos , Humanos , Lentivirus/genética , Camundongos , Mifepristona/farmacologia , Doenças Neurodegenerativas/genética , Células-Tronco , Transgenes/genética
3.
Oral Dis ; 20(1): 6-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23656576

RESUMO

Spinal and bulbar muscular atrophy, or Kennedy's disease, is an X-linked motor neuron disease caused by polyglutamine repeat expansion in the androgen receptor. The disease is characterised by weakness, atrophy and fasciculations in the limb and bulbar muscles. Affected males may have signs of androgen insensitivity, such as gynaecomastia and reduced fertility. Neurophysiological studies are typically consistent with diffuse denervation atrophy, and serum creatine kinase is usually elevated 2-5 times above normal. Progression of the disease is slow, and the focus of spinal and bulbar muscular atrophy (SBMA) management is to prevent complications.


Assuntos
Transtornos Musculares Atróficos , Humanos , Transtornos Musculares Atróficos/diagnóstico , Transtornos Musculares Atróficos/etiologia , Transtornos Musculares Atróficos/terapia
4.
Neurology ; 77(6): 540-8, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21753178

RESUMO

OBJECTIVE: Ganglioside-induced differentiation associated-protein 1 (GDAP1) mutations are commonly associated with autosomal recessive Charcot-Marie-Tooth (ARCMT) neuropathy; however, in rare instances, they also lead to autosomal dominant Charcot-Marie-Tooth (ADCMT). We aimed to investigate the frequency of disease-causing heterozygous GDAP1 mutations in ADCMT and their associated phenotype. METHODS: We performed mutation analysis in a large cohort of ADCMT patients by means of bidirectional sequencing of coding regions and exon-intron boundaries of GDAP1. Intragenic GDAP1 deletions were excluded using an allele quantification assay. We confirmed the pathogenic character of one sequence variant by in vitro experiments assaying mitochondrial morphology and function. RESULTS: In 8 Charcot-Marie-Tooth disease (CMT) families we identified 4 pathogenic heterozygous GDAP1 mutations, 3 of which are novel. Three of the mutations displayed reduced disease penetrance. Disease onset in the affected individuals was variable, ranging from early childhood to adulthood. Disease progression was slow in most patients and overall severity milder than typically seen in autosomal recessive GDAP1 mutations. Electrophysiologic changes are heterogeneous but compatible with axonal neuropathy in the majority of patients. CONCLUSIONS: With this study, we broaden the phenotypic and genetic spectrum of autosomal dominant GDAP1-associated neuropathies. We show that patients with dominant GDAP1 mutations may display clear axonal CMT, but may also have only minimal clinical and electrophysiologic abnormalities. We demonstrate that cell-based functional assays can be reliably used to test the pathogenicity of unknown variants. We discuss the implications of phenotypic variability and the reduced penetrance of autosomal dominant GDAP1 mutations for CMT diagnostic testing and counseling.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas do Tecido Nervoso/genética , Animais , Axônios/patologia , Células COS , Chlorocebus aethiops , Estudos de Coortes , Análise Mutacional de DNA , Éxons/genética , Genes Dominantes , Haplótipos , Células HeLa , Humanos , Íntrons/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Paternidade , Linhagem , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Eur J Neurol ; 18(10): 1269-71, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21418439

RESUMO

BACKGROUND: Autosomal dominant cerebellar ataxia, currently denominated spinocerebellar ataxia (SCAs), represents a heterogeneous group of neurodegenerative disorders affecting the cerebellum and its connections. We describe the clinical and molecular findings in 16 patients originating from Malian families, who suffer from progressive cerebellar ataxia syndrome. METHODS AND RESULTS: Molecular analysis allows genetic profiles of SCA to be distinguished. In seven patients, SCA type 2 (CAG) mutation was expanded from 39 to 43 repeats. SCA type 7 (CAG) mutation was confirmed in six patients. Mutations were expanded from 49 to 59 repeats. In three patients, SCA type3 was diagnosed and CAG mutation was expanded to 73 repeats. CONCLUSIONS: Our data suggest that the most frequent types of SCA are SCA2 and SCA7. However, further studies are needed to confirm these preliminary results.


Assuntos
Predisposição Genética para Doença/genética , Mutação/genética , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos/genética , Adulto , Idoso , Feminino , Frequência do Gene/genética , Genótipo , Humanos , Masculino , Mali/epidemiologia , Pessoa de Meia-Idade , Ataxias Espinocerebelares/classificação
6.
Neurogenetics ; 11(3): 313-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20039086

RESUMO

We identified a family in Mali with two sisters affected by spastic paraplegia. In addition to spasticity and weakness of the lower limbs, the patients had marked atrophy of the distal upper extremities. Homozygosity mapping using single nucleotide polymorphism arrays showed that the sisters shared a region of extended homozygosity at chromosome 19p13.11-q12 that was not shared by controls. These findings indicate a clinically and genetically distinct form of hereditary spastic paraplegia with amyotrophy, designated SPG43.


Assuntos
Neurite do Plexo Braquial/genética , Cromossomos Humanos Par 19/genética , Loci Gênicos , Paraplegia Espástica Hereditária/genética , Adolescente , Idade de Início , Feminino , Homozigoto , Humanos , Mali , Linhagem , Polimorfismo de Nucleotídeo Único , Irmãos , Adulto Jovem
7.
Neurogenetics ; 10(4): 319-23, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19322595

RESUMO

We studied a Malian family with parental consanguinity and two of eight siblings affected with late-childhood-onset progressive myoclonus epilepsy and cognitive decline, consistent with the diagnosis of Lafora disease. Genetic analysis showed a novel homozygous single-nucleotide variant in the NHLRC1 gene, c.560A>C, producing the missense change H187P. The changed amino acid is highly conserved, and the mutation impairs malin's ability to degrade laforin in vitro. Pathological evaluation showed manifestations of Lafora disease in the entire brain, with particularly severe involvement of the pallidum, thalamus, and cerebellum. Our findings document Lafora disease with severe manifestations in the West African population.


Assuntos
Proteínas de Transporte/genética , Doença de Lafora/genética , Mutação de Sentido Incorreto , Adolescente , Encéfalo/patologia , Criança , Consanguinidade , Análise Mutacional de DNA , Feminino , Humanos , Doença de Lafora/patologia , Doença de Lafora/fisiopatologia , Masculino , Mali , Linhagem , Polimorfismo de Nucleotídeo Único , Ubiquitina-Proteína Ligases , Adulto Jovem
8.
Neurology ; 66(7): 1067-73, 2006 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-16481599

RESUMO

BACKGROUND: Clinical trials of drugs that increase SMN protein levels in vitro are currently under way in patients with spinal muscular atrophy. OBJECTIVE: To develop and validate measures of SMN mRNA and protein in peripheral blood and to establish baseline SMN levels in a cohort of controls, carriers, and patients of known genotype, which could be used to follow response to treatment. METHODS: SMN1 and SMN2 gene copy numbers were determined in blood samples collected from 86 subjects. Quantitative reverse transcription PCR was used to measure blood levels of SMN mRNA with and without exon 7. A cell immunoassay was used to measure blood levels of SMN protein. RESULTS: Blood levels of SMN mRNA and protein were measured with high reliability. There was little variation in SMN levels in individual subjects over a 5-week period. Levels of exon 7-containing SMN mRNA and SMN protein correlated with SMN1 and SMN2 gene copy number. With the exception of type I SMA, there was no correlation between SMN levels and disease severity. CONCLUSION: SMN mRNA and protein levels can be reliably measured in the peripheral blood and used during clinical trials in spinal muscular atrophy, but these levels do not necessarily predict disease severity.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Atrofia Muscular Espinal/genética , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Biomarcadores/sangue , Linhagem Celular , Ensaios Clínicos como Assunto , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/sangue , Triagem de Portadores Genéticos , Humanos , Lactente , Linfócitos , Atrofia Muscular Espinal/sangue , Proteínas do Tecido Nervoso/sangue , RNA Mensageiro/sangue , Proteínas de Ligação a RNA/sangue , Valores de Referência , Proteínas do Complexo SMN , Proteína 1 de Sobrevivência do Neurônio Motor , Proteína 2 de Sobrevivência do Neurônio Motor
9.
Brain ; 128(Pt 2): 436-42, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15618281

RESUMO

The protein kinase C gamma (PKCgamma) gene is mutated in spinocerebellar ataxia type 14 (SCA14). In this study, we investigated the effects of two SCA14 missense mutations, G118D and C150F, on PKCgamma function. We found that these mutations increase the intrinsic activity of PKCgamma. Direct visualization of labelled PKCgamma in living cells demonstrates that the mutant protein translocates more rapidly to selected regions of the plasma membrane in response to Ca2+ influx. These results point to specific alterations in mutant PKCgamma function that could lead to the selective neuronal degeneration of SCA14.


Assuntos
Mutação de Sentido Incorreto , Proteína Quinase C/genética , Ataxias Espinocerebelares/genética , Sequência de Aminoácidos , Animais , Células COS , Cálcio/farmacologia , Membrana Celular/enzimologia , Chlorocebus aethiops , Humanos , Dados de Sequência Molecular , Fosforilação , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ataxias Espinocerebelares/enzimologia , Translocação Genética/efeitos dos fármacos
10.
Proc Natl Acad Sci U S A ; 98(26): 15179-84, 2001 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-11742087

RESUMO

Polyglutamine diseases include at least nine neurodegenerative disorders, each caused by a CAG repeat expansion in a different gene. Accumulation of mutant polyglutamine-containing proteins occurs in patients, and evidence from cell culture and animal experiments suggests the nucleus as a site of pathogenesis. To understand the consequences of nuclear accumulation, we created a cell culture system with nuclear-targeted polyglutamine. In our system, cell death can be mitigated by overexpression of full-length cAMP response element binding protein (CREB)-binding protein (CBP) or its amino-terminal portion alone. CBP is one of several histone acetyltransferases sequestered by polyglutamine inclusions. We found histone acetylation to be reduced in cells expressing mutant polyglutamine. Reversal of this hypoacetylation, which can be achieved either by overexpression of CBP or its amino terminus or by treatment with deacetylase inhibitors, reduced cell loss. These findings suggest that nuclear accumulation of polyglutamine can lead to altered protein acetylation in neurons and indicate a novel therapeutic strategy for polyglutamine disease.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases , Peptídeos/antagonistas & inibidores , Animais , Proteína de Ligação a CREB , Morte Celular/efeitos dos fármacos , Linhagem Celular , Camundongos , Neurônios Motores/efeitos dos fármacos , Proteínas Nucleares/genética , Peptídeos/toxicidade , Receptores Androgênicos/genética , Transativadores/genética , Transfecção
12.
Brain Res Bull ; 56(3-4): 161-3, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11719245

RESUMO

Kennedy's disease was the first of eight neurodegenerative disorders found to be caused by expanded polyglutamine repeats. Each of these disorders is likely caused by a toxic gain of function in the disease gene product, often associated with inclusions of mutant protein in susceptible neurons. The mechanism of toxicity may involve sequestration and depletion of a polyglutamine-containing protein that is important to neuronal survival, such as CREB-binding protein. Recent insights into the biochemistry and cellular pathology of the polyglutamine expansion neurodegenerative diseases provide the opportunity for systematic drug screens and a rational approach to effective therapy.


Assuntos
Doença de Huntington/genética , Atrofia Muscular Espinal/genética , Peptídeos/genética , Expansão das Repetições de Trinucleotídeos , Humanos
13.
Ann Neurol ; 49(6): 706-11, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11409421

RESUMO

Aminoglycosides have previously been shown to suppress nonsense mutations, allowing translation of full-length proteins in vitro and in animal models. In the mdx mouse, where muscular dystrophy is due to a nonsense mutation in the dystrophin gene, gentamicin suppressed truncation of the protein and ameliorated the phenotype. A subset of patients with Duchenne and Becker muscular dystrophy similarly possess a nonsense mutation, causing premature termination of dystrophin translation. Four such patients, with various stop codon sequences, were treated once daily with intravenous gentamicin at 7.5 mg/kg/day for 2 weeks. No ototoxicity or nephrotoxicity was detected. Full-length dystrophin was not detected in pre- and post-treatment muscle biopsies.


Assuntos
Códon sem Sentido/genética , Gentamicinas/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Adolescente , Biópsia , Western Blotting , Criança , Creatina Quinase/sangue , Distrofina/biossíntese , Distrofina/química , Distrofina/genética , Distrofina/imunologia , Gentamicinas/administração & dosagem , Gentamicinas/efeitos adversos , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/metabolismo , Fenótipo , Resultado do Tratamento
14.
Biochem Biophys Res Commun ; 282(2): 499-506, 2001 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-11401487

RESUMO

Androgens, like other steroid hormones, exert profound effects on cell growth and survival by modulating the expression of target genes. In vertebrates, androgens play a critical role downstream of the testis determination pathway, influencing the expression of sexually dimorphic traits. Among cells of the nervous system, motor neurons respond to trophic effects of androgen stimulation, with a subpopulation of spinal motor neurons exhibiting sexually dimorphic survival. To study the mechanisms of androgen action in these cells, we performed a subtractive screen for genes upregulated by androgen in a motor neuron cell line. We show androgen-inducible expression of two RNA-binding proteins that are the mammalian homologues of invertebrate sex determination genes. Androgens upregulate the expression of tra-2alpha, an enhancer of RNA splicing homologous to Drosophila tra-2, and promote redistribution of the protein from a diffuse to a speckled pattern within the nucleus. Similarly, androgens upregulate the expression of a novel gene homologous to Caenorhabditis elegans fox-1. These data indicate that androgens exert their effects, in part, by modulating the expression and function of genes involved in RNA processing, and identify homologues of invertebrate sex determination genes as androgen-responsive genes in mammals.


Assuntos
Androgênios/farmacologia , Proteínas de Caenorhabditis elegans , Proteínas de Drosophila , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética , Processos de Determinação Sexual , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA/genética , Humanos , Masculino , Metribolona/farmacologia , Camundongos , Dados de Sequência Molecular , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Congêneres da Testosterona/farmacologia , Transfecção , Regulação para Cima/efeitos dos fármacos
17.
Neurogenetics ; 3(1): 1-6, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11085590

RESUMO

Amyotrophic lateral sclerosis (ALS) denotes a heterogeneous group of neurodegenerative disorders affecting upper and lower motor neurons. ALS4 is a juvenile-onset, autosomal dominant form of ALS that is characterized by slow progression, distal limb weakness and amyotrophy, and pyramidal signs associated with severe loss of motor neurons in the brain and spinal cord. The ALS4 locus was recently mapped by linkage analysis to a large genetic interval on chromosome 9q34. By undertaking extensive genetic linkage analysis, we have significantly refined the ALS4 locus to a critical interval of less than 3 cM, flanked by D9S149 and D9S1198. Previous physical mapping in this region has indicated that this critical interval spans approximately 500 kb. Seventeen putative transcripts have been localized within this interval including 7 characterized genes, 2 partially characterized genes, and 8 "anonymous" expressed sequence tags . These are therefore positional candidate genes for the ALS4 locus. We have also undertaken mutation analysis and genetic mapping to investigate and exclude candidate genes, including RING3L/ORFX and RALGDS, from a pathogenic role in ALS4.


Assuntos
Cromossomos Humanos Par 9 , Genes Dominantes , Doença dos Neurônios Motores/genética , Idade de Início , Mapeamento Cromossômico , Feminino , Ligação Genética , Marcadores Genéticos , Humanos , Masculino , Linhagem , Polimorfismo Genético
18.
Hum Mol Genet ; 9(14): 2197-202, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10958659

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is one of eight inherited neurodegenerative diseases known to be caused by CAG repeat expansion. The expansion results in an expanded polyglutamine tract, which likely confers a novel, toxic function to the affected protein. Cell culture and transgenic mouse studies have implicated the nucleus as a site for pathogenesis, suggesting that a critical nuclear factor or process is disrupted by the polyglutamine expansion. In this report we present evidence that CREB-binding protein (CBP), a transcriptional co-activator that orchestrates nuclear response to a variety of cell signaling cascades, is incorporated into nuclear inclusions formed by polyglutamine-containing proteins in cultured cells, transgenic mice and tissue from patients with SBMA. We also show CBP incorporation into nuclear inclusions formed in a cell culture model of another polyglutamine disease, spinocerebellar ataxia type 3. We present evidence that soluble levels of CBP are reduced in cells expressing expanded polyglutamine despite increased levels of CBP mRNA. Finally, we demonstrate that over-expression of CBP rescues cells from polyglutamine-mediated toxicity in neuronal cell culture. These data support a CBP-sequestration model of polyglutamine expansion disease.


Assuntos
Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae , Transativadores/metabolismo , Expansão das Repetições de Trinucleotídeos , Animais , Ataxina-3 , Proteína de Ligação a CREB , Morte Celular/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Luciferases/metabolismo , Proteínas Luminescentes/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/farmacologia , RNA Mensageiro/metabolismo , Proteínas Repressoras , Escroto/metabolismo , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica
19.
Muscle Nerve ; 23(6): 843-50, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10842259

RESUMO

Expansions of unstable trinucleotide repeats cause at least 15 inherited neurologic diseases. Here we review what has been learned of three neuromuscular diseases caused by this type of mutation. X-linked spinal and bulbar muscular atrophy is a motor neuronopathy caused by a CAG repeat expansion in the androgen receptor gene. The mutated protein has an expanded polyglutamine tract, forms intranuclear aggregates, and mediates neurodegeneration through a toxic gain-of-function mechanism. Oculopharyngeal muscular dystrophy is a dominantly inherited myopathy caused by a GCG/polyalanine expansion in the gene encoding poly(A)-binding protein 2. Myotonic dystrophy is a clinically variable multisystem disease caused by a CTG expansion in the 3' untranslated region of the myotonin gene. For each of these disorders, we summarize the clinical and pathologic features and review current understanding of the molecular mechanisms underlying their pathogenesis.


Assuntos
Doenças Neuromusculares/genética , Doenças Neuromusculares/patologia , Repetições de Trinucleotídeos , Humanos
20.
Ann Neurol ; 47(5): 659-61, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10805340

RESUMO

Mitochondrial iron accumulation is thought to underlie the pathophysiology of Friedreich ataxia and may occur at the expense of cytosolic iron. Decreases in cytosolic iron induce expression of the transferrin receptor, some of which is released into the serum. Here, we demonstrate that serum transferrin receptor concentrations are increased in patients with Friedreich ataxia, which supports the hypothesis that it is a disease of abnormal intracellular iron distribution.


Assuntos
Ataxia de Friedreich/sangue , Receptores da Transferrina/sangue , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Ataxia de Friedreich/genética , Expressão Gênica/genética , Humanos , Mutação Puntual/genética , RNA Mensageiro/genética , Receptores da Transferrina/genética , Índice de Gravidade de Doença , Expansão das Repetições de Trinucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...