Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Burns ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582695

RESUMO

BACKGROUND: This study compared a novel topical hydrogel burn dressing (CI-PRJ012) to standard of care (silver sulfadiazine) and to untreated control in a swine thermal burn model, to assess for wound healing properties both in the presence and absence of concomitant bacterial inoculation. METHODS: Eight equal burn wounds were created on six Yorkshire swine. Half the wounds were randomized to post-burn bacterial inoculation. Wounds were subsequently randomized to three treatments groups: no intervention, CI-PRJ012, or silver sulfadiazine cream. At study end, a blinded pathologist evaluated wounds for necrosis and bacterial colonization. RESULTS: When comparing CI-PRJ012 and silver sulfadiazine cream to no treatment, both agents significantly reduced the amount of necrosis and bacteria at 7 days after wound creation (p < 0.01, independently for both). Further, CI-PRJ012 was found to be significantly better than silver sulfadiazine (p < 0.02) in reducing bacterial colonization. For wound necrosis, no significant difference was found between silver sulfadiazine cream and CI-PRJ012 (p = 0.33). CONCLUSIONS: CI-PRJ012 decreases necrosis and bacterial colonization compared to no treatment in a swine model. CI-PRJ012 appeared to perform comparably to silver sulfadiazine. CI-PRJ012, which is easily removed with the application of room-temperature water, may provide clinical advantages over silver sulfadiazine.

2.
Sci Rep ; 14(1): 3660, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351180

RESUMO

This work reports the use of a high-flux solar simulator that mimics the solar spectrum and a cold-wall CVD reactor to demonstrate the feasibility of utilizing a renewable energy resource in synthesizing graphene under various conditions. A parametric study of process parameters was conducted using a probabilistic approach. Gaussian process regression serves as a surrogate to establish a prior for Bayesian optimization, and an information acquisition function is employed to identify conditions that yield high-quality products. Backscattered electron images and Raman mapping were used to assess the effects of growth conditions on graphene characteristic sizes, film quality, and uniformity. We report the synthesis of high-quality single-layer graphene (SLG) and AB-stacked bilayer graphene films in a one-step, short-time process with [Formula: see text] ratios of 0.21 and 0.14, respectively. Electron diffraction analysis shows peak intensities that resemble SLG and AB-bilayer graphene with up to 5 and 20 [Formula: see text]m grain sizes, respectively. The optical transmissivities of SLG and AB-bilayer graphene fall between 0.959-0.977 and 0.929-0.953, whereas the sheet resistances measured by a 4-point probe with 1 mm spacing are 15.5 ± 4.6 and 3.4 ± 1.5 k[Formula: see text]/sq, respectively. Further scale-up of the optimized graphene growth area was achieved by flattening the insolation profile, leading to spatial uniformity up to 13 mm in radius. Direct solar capture for CVD synthesis enable a practical and sustainable option for synthesizing graphene films applicable for photonic and electronic applications.

3.
Breast Cancer Res ; 26(1): 12, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238771

RESUMO

BACKGROUND: Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, only 30-40% of TNBC patients treated with neoadjuvant chemotherapy (NAC) show pCR, while the remaining 60-70% show residual disease (RD). The role of the tumor microenvironment in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response. METHODS: H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) of the model development cohort and 79 patients (41 with pCR and 38 with RD) of the validation cohort were separated through a stratified eightfold cross-validation strategy for the first step and leave-one-out cross-validation strategy for the second step. A tile-level histology label prediction pipeline and four machine-learning classifiers were used to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a probability profile during testing. The predicted histology classes were used to generate a histology classification map of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained with features derived from paired histology classification maps. The top graph-based features capturing the relevant spatial information across the different histological classes were provided to the radial basis function kernel support vector machine (rbfSVM) classifier for NAC treatment response prediction. RESULTS: The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy of the model development cohort. The model was validated with an independent cohort with tile histology validation accuracy of 83.59% and NAC prediction accuracy of 81.01%. The histological class pairs with the strongest NAC response predictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid giant cancer cells for RD. CONCLUSION: Our machine learning pipeline can robustly identify clinically relevant histological classes that predict NAC response in TNBC patients and may help guide patient selection for NAC treatment.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Terapia Neoadjuvante/métodos , Prognóstico , Aprendizado de Máquina , Microambiente Tumoral
4.
Res Sq ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645881

RESUMO

Background: Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, only 30-40% of TNBC patients treated with neoadjuvant chemotherapy (NAC) show pCR, while the remaining 60-70% show residual disease (RD). The role of the tumor microenvironment (TME) in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response. Methods: H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) were separated through a stratified 8-fold cross validation strategy for the first step and leave one out cross validation strategy for the second step. A tile-level histology label prediction pipeline and four machine learning classifiers were used to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a probability profile during testing. The predicted histology classes were used to generate a histology classification map of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained with features derived from paired histology classification maps. The top graph-based features capturing the relevant spatial information across the different histological classes were provided to the radial basis function kernel support vector machine (rbfSVM) classifier for NAC treatment response prediction. Results: The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy. The histological class pairs with the strongest NAC response predictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid giant cancer cells for RD. Conclusion: Our machine learning pipeline can robustly identify clinically relevant histological classes that predict NAC response in TNBC patients and may help guide patient selection for NAC treatment.

5.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131688

RESUMO

Background: Neoadjuvant chemotherapy (NAC) is the standard treatment for early-stage triple negative breast cancer (TNBC). The primary endpoint of NAC is a pathological complete response (pCR). NAC results in pCR in only 30%â€"40% of TNBC patients. Tumor-infiltrating lymphocytes (TILs), Ki67 and phosphohistone H3 (pH3) are a few known biomarkers to predict NAC response. Currently, systematic evaluation of the combined value of these biomarkers in predicting NAC response is lacking. In this study, the predictive value of markers derived from H&E and IHC stained biopsy tissue was comprehensively evaluated using a supervised machine learning (ML)-based approach. Identifying predictive biomarkers could help guide therapeutic decisions by enabling precise stratification of TNBC patients into responders and partial or non-responders. Methods: Serial sections from core needle biopsies (n=76) were stained with H&E, and immunohistochemically for the Ki67 and pH3 markers, followed by whole slide image (WSI) generation. The resulting WSI triplets were co-registered with H&E WSIs serving as the reference. Separate mask region-based CNN (MRCNN) models were trained with annotated H&E, Ki67 and pH3 images for detecting tumor cells, stromal and intratumoral TILs (sTILs and tTILs), Ki67 + , and pH3 + cells. Top image patches with a high density of cells of interest were identified as hotspots. Best classifiers for NAC response prediction were identified by training multiple ML models, and evaluating their performance by accuracy, area under curve, and confusion matrix analyses. Results: Highest prediction accuracy was achieved when hotspot regions were identified by tTIL counts and each hotspot was represented by measures of tTILs, sTILs, tumor cells, Ki67 + , and pH3 + features. Regardless of the hotspot selection metric, a complementary use of multiple histological features (tTILs, sTILs) and molecular biomarkers (Ki67 and pH3) resulted in top ranked performance at the patient level. Conclusions: Overall, our results emphasize that prediction models for NAC response should be based on biomarkers in combination rather than in isolation. Our study provides compelling evidence to support the use of ML-based models to predict NAC response in patients with TNBC.

6.
J Med Chem ; 66(7): 4888-4909, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36940470

RESUMO

Immune activating agents represent a valuable class of therapeutics for the treatment of cancer. An area of active research is expanding the types of these therapeutics that are available to patients via targeting new biological mechanisms. Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of immune signaling and a target of high interest for the treatment of cancer. Herein, we present the discovery and optimization of novel amino-6-aryl pyrrolopyrimidine inhibitors of HPK1 starting from hits identified via virtual screening. Key components of this discovery effort were structure-based drug design aided by analyses of normalized B-factors and optimization of lipophilic efficiency.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Pirróis/farmacologia
7.
Mil Med ; 188(11-12): 3330-3335, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-35820028

RESUMO

INTRODUCTION: Noncompressible torso hemorrhage is the leading cause of exsanguination on the battlefield. A self-expanding, intraperitoneal deployed, thermoreversible foam has been developed that can be easily administered by a medic in austere settings to temporarily tamponade noncompressible torso hemorrhage. The purpose of this study was to assess the long-term safety and physical characteristics of using Fast Onset Abdominal Management (FOAM; Critical Innovations LLC) in swine. MATERIALS AND METHODS: Yorkshire swine (40-60 kg) were sedated, intubated, and placed on ventilatory support. An external jugular catheter was placed for sampling of blood. Continuous heart rate, temperature, saturation of peripheral oxygen, end-tidal carbon dioxide, and peak airway pressures were monitored for a 4-hour period after intervention (i.e., FOAM agent injection or a sham introducer without agent delivery). The FOAM agent was injected to obtain an intra-abdominal pressure of 60 mmHg for at least 10 minutes. After 4 hours, the animals were removed from ventilatory support and returned to their housing for a period of 7-14 days. Group size analysis was not performed, as this was a descriptive safety study. Blood samples were obtained at baseline and at 1-hour post-intervention and then on days 1, 3, 7, and 14. Euthanasia, necropsy, and harvesting of samples for histologic analysis (from kidneys, terminal ilium, liver, pancreas, stomach, spleen, and lungs) were performed upon expiration. Histologic scoring for evidence of ischemia, necrosis, and abdominal compartment sequela was blinded and reported by semi-quantitative scale (range 0-4; 0 = no change, 1 = minimal, 2 = mild, 3 = moderate, and 4 = marked). Oregon Health & Science University's Institutional Animal Care and Use Committee, as well as the U.S. Army Animal Care and Use Review Office, approved this protocol before the initiation of experiments (respectively, protocol numbers IP00003591 and MT180006.e002). RESULTS: Five animals met a priori inclusion criteria, and all of these survived to their scheduled endpoints. Two animals received sham injections of the FOAM agent (one euthanized on day 7 and one on day 14), and three animals received FOAM agent injections (one euthanized on day 7 and two on day 14). A transitory increase in creatinine and lactate was detected during the first day in the FOAM injected swine but resolved by day 3. No FOAM agent was observed in the peritoneal cavity upon necropsy at day 7 or 14. Histologic data revealed no clinically relevant differences in any organ system between intervention and control animals upon sacrifice at day 7 or 14. CONCLUSIONS: This study describes the characteristics, survival, and histological analysis of using FOAM in a porcine model. In our study, FOAM reached the desired intra-abdominal pressure endpoint while not significantly altering basic hematologic parameters, except for transient elevations of creatinine and lactate on day 1. Furthermore, there was no clinical or histological relevant evidence of ischemia, necrosis, or intra-abdominal compartment syndrome. These results provide strong support for the safety of the FOAM device and will support the design of further regulatory studies in swine and humans.


Assuntos
Traumatismos Abdominais , Humanos , Suínos , Animais , Creatinina , Hemorragia/terapia , Tronco , Necrose , Lactatos , Isquemia
8.
Diagnostics (Basel) ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38201383

RESUMO

BACKGROUND: Neoadjuvant chemotherapy (NAC) is the standard treatment for early-stage triple negative breast cancer (TNBC). The primary endpoint of NAC is a pathological complete response (pCR). NAC results in pCR in only 30-40% of TNBC patients. Tumor-infiltrating lymphocytes (TILs), Ki67 and phosphohistone H3 (pH3) are a few known biomarkers to predict NAC response. Currently, systematic evaluation of the combined value of these biomarkers in predicting NAC response is lacking. In this study, the predictive value of markers derived from H&E and IHC stained biopsy tissue was comprehensively evaluated using a supervised machine learning (ML)-based approach. Identifying predictive biomarkers could help guide therapeutic decisions by enabling precise stratification of TNBC patients into responders and partial or non-responders. METHODS: Serial sections from core needle biopsies (n = 76) were stained with H&E and immunohistochemically for the Ki67 and pH3 markers, followed by whole-slide image (WSI) generation. The serial section stains in H&E stain, Ki67 and pH3 markers formed WSI triplets for each patient. The resulting WSI triplets were co-registered with H&E WSIs serving as the reference. Separate mask region-based CNN (MRCNN) models were trained with annotated H&E, Ki67 and pH3 images for detecting tumor cells, stromal and intratumoral TILs (sTILs and tTILs), Ki67+, and pH3+ cells. Top image patches with a high density of cells of interest were identified as hotspots. Best classifiers for NAC response prediction were identified by training multiple ML models and evaluating their performance by accuracy, area under curve, and confusion matrix analyses. RESULTS: Highest prediction accuracy was achieved when hotspot regions were identified by tTIL counts and each hotspot was represented by measures of tTILs, sTILs, tumor cells, Ki67+, and pH3+ features. Regardless of the hotspot selection metric, a complementary use of multiple histological features (tTILs, sTILs) and molecular biomarkers (Ki67 and pH3) resulted in top ranked performance at the patient level. CONCLUSIONS: Overall, our results emphasize that prediction models for NAC response should be based on biomarkers in combination rather than in isolation. Our study provides compelling evidence to support the use of ML-based models to predict NAC response in patients with TNBC.

10.
Front Immunol ; 13: 897991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983060

RESUMO

Section Head: Clinical/translational cancer immunotherapy. Background: The goal of this study was to estimate the objective response rate for utomilumab in adults with immune checkpoint inhibitor (ICI)-refractory melanoma and non-small-cell lung cancer (NSCLC). Methods: Utomilumab was dosed intravenously every 4 weeks (Q4W) and adverse events (AEs) monitored. Tumor responses by RECIST1.1 were assessed by baseline and on-treatment scans. Tumor biopsies were collected for detection of programmed cell death ligand 1, CD8, 4-1BB, perforin, and granzyme B, and gene expression analyzed by next-generation sequencing. CD8+ T cells from healthy donors were stimulated with anti-CD3 ± utomilumab and compared with control. Results: Patients with melanoma (n=43) and NSCLC (n=20) received utomilumab 0.24 mg/kg (n=36), 1.2 mg/kg (n=26), or 10 mg/kg (n=1). Treatment-emergent AEs (TEAEs) occurred in 55 (87.3%) patients and serious TEAEs in 18 (28.6%). Five (7.9%) patients discontinued owing to TEAEs. Thirty-two (50.8%) patients experienced treatment-related AEs, mostly grade 1-2. Objective response rate: 2.3% in patients with melanoma; no confirmed responses for patients with NSCLC. Ten patients each with melanoma (23.3%) or NSCLC (50%) had stable disease; respective median (95% confidence interval, CI) progression-free survival was 1.8 (1.7-1.9) and 3.6 (1.6-6.5) months. Utomilumab exposure increased with dose. The incidences of antidrug and neutralizing antibodies were 46.3% and 19.4%, respectively. Efficacy was associated with immune-active tumor microenvironments, and pharmacodynamic activity appeared to be blunted at higher doses. Conclusions: Utomilumab was well tolerated, but antitumor activity was low in patients who previously progressed on ICIs. The potential of 4-1BB agonists requires additional study to optimize efficacy while maintaining the tolerable safety profile.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Adulto , Anticorpos Monoclonais Humanizados , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoglobulina G , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/tratamento farmacológico , Microambiente Tumoral
11.
Rev Sci Instrum ; 93(7): 073101, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922307

RESUMO

With the growing interest in high-flux solar sources, a need exists for simple, accurate, and inexpensive strategies to characterize their output radiative flux. In this paper, the irradiation output from a 10 kWe xenon lamp solar simulator is characterized by an inverse mapping technique that uses a custom radiometer and infrared camera, validated by a direct characterization method (heat flux gauge). The heat flux distribution is determined in a vacuum chamber using an easily obtainable graphite target and an inverse heat transfer model. The solar simulator produces peak fluxes in the range of 1.5-4.5 MW/m2 as measured directly by a heat flux gauge, and its output can be controlled using a variable power supply. Spectral measurements indicate that minor variations in the simulator's output with respect to its current supply occur in the spectral range of 450-800 nm. The radiometer presented in this work allows for characterizing solar irradiation under practical conditions (e.g., inside a solar reactor) and thus accounts for deviations due to additional components, such as viewport effects. Additionally, it provides an inexpensive and efficient means of monitoring any deterioration in the performance of solar sources over time without the need for complex recalibration.

12.
J Trauma Acute Care Surg ; 91(2S Suppl 2): S99-S106, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34324472

RESUMO

BACKGROUND: Noncompressible hemorrhage is a leading cause of potentially survivable combat death, with the vast majority of such deaths occurring in the out-of-hospital environment. While large animal models of this process are important for device and therapeutic development, clinical practice has changed over time and past models must follow suit. Developed in conjunction with regulatory feedback, this study presents a modernized, out-of-hospital, noncompressible hemorrhage model, in conjunction with a randomized study of past, present, and future fluid options following a hypotensive resuscitation protocol consistent with current clinical practice. METHODS: We performed a randomized controlled experiment comparing three fluid resuscitation options in Yorkshire swine. Baseline data from animals of same size from previous experiments were analyzed (n = 70), and mean systolic blood pressure was determined, with a permissive hypotension resuscitation target defined as a 25% decrease from normal (67 mm Hg). After animal preparation, a grade IV to V liver laceration was induced. Animals bled freely for a 10-minute "time-to-responder" period, after which resuscitation occurred with randomized fluid in boluses to the goal target: 6% hetastarch in lactated electrolyte injection (HEX), normal saline (NS), or fresh whole blood (FWB). Animals were monitored for a total simulated "delay to definitive care" period of 2 hours postinjury. RESULTS: At the end of the 2-hour study period, 8.3% (1 of 12 swine) of the HEX group, 50% (6 of 12 swine) of the NS group, and 75% (9 of 12 swine) of the FWB had survived (p = 0.006), with Holm-Sidak pairwise comparisons showing a significant difference between HEX and FWB and (p = 0.005). Fresh whole blood had significantly higher systemic vascular resistance and hemoglobin levels compared with other groups (p = 0.003 and p = 0.001, respectively). CONCLUSION: Survival data support the movement away from HEX toward NS and, preferably, FWB in clinical practice and translational animal modeling. The presented model allows for future research including basic science, as well as translational studies of novel diagnostics, therapeutics, and devices.


Assuntos
Traumatismos Abdominais , Hidratação , Hemoperitônio , Ressuscitação , Choque Hemorrágico , Animais , Masculino , Traumatismos Abdominais/mortalidade , Traumatismos Abdominais/fisiopatologia , Traumatismos Abdominais/terapia , Modelos Animais de Doenças , Hidratação/métodos , Hidratação/mortalidade , Hemoperitônio/mortalidade , Hemoperitônio/fisiopatologia , Hemoperitônio/terapia , Fígado/lesões , Ressuscitação/métodos , Ressuscitação/mortalidade , Choque Hemorrágico/mortalidade , Choque Hemorrágico/fisiopatologia , Choque Hemorrágico/terapia , Suínos
13.
J Surg Res ; 259: 175-181, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33290892

RESUMO

BACKGROUND: Noncompressible torso hemorrhage (NCTH) is a leading cause of traumatic exsanguination, requiring emergent damage control surgery performed by a highly trained surgeon in a sterile operating environment. A self-expanding, intraabdominally deployed, thermoreversible foam is one proposed method to potentially task shift temporizing hemostasis to earlier providers and additional settings. The purpose of this study was to assess the feasibility of using Fast Onset Abdominal Management (FOAM) in a lethal swine model of NCTH. METHODS: This was a proof-of-concept study comparing FOAM intervention in large Yorkshire swine to historical control animals in the established Ross-Burns model of NCTH. After animal preparation, a Grade IV liver laceration was surgically induced, followed by a free bleed period of 10 min. FOAM was then deployed to a goal intraabdominal pressure of 60 mm Hg for 5 min, followed by a total 60-min observation period following injury. RESULTS: At the end of the experiment, the FOAM agent was found to be distributed throughout the peritoneal cavity in all animals, without signs of iatrogenic injury. The FOAM group demonstrated a significantly higher mean arterial pressure compared with historical controls and a trend toward improved survival: 82% (9/11) compared with 50% for controls (7/14; P = 0.082). CONCLUSIONS: This is the first study to describe the use of a thermoresponsive foam to manage NCTH and successfully demonstrated proof-of-concept feasibility of FOAM deployment. These results provide strong support for future, higher-powered studies to confirm improved survival with this novel intervention.


Assuntos
Traumatismos Abdominais/terapia , Exsanguinação/terapia , Hemorragia/terapia , Traumatismos Abdominais/mortalidade , Animais , Modelos Animais de Doenças , Exsanguinação/mortalidade , Estudos de Viabilidade , Hemorragia/mortalidade , Poloxâmero , Suínos , Tronco
14.
ACS Cent Sci ; 6(11): 2105-2116, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33274287

RESUMO

Gold nanostars (AuNSTs) are biocompatible, have large surface areas, and are characterized by high near-infrared extinction, making them ideal for integration with technologies targeting biological applications. We have developed a robust and simple microfluidic method for the direct growth of anisotropic AuNSTs on oxide substrates including indium tin oxide and glass. The synthesis was optimized to yield AuNSTs with high anisotropy, branching, uniformity, and density in batch and microfluidic systems for optimal light-to-heat conversion upon laser irradiation. Surface-enhanced Raman scattering spectra and mesoscale temperature measurements were combined with spatially correlated scanning electron microscopy to monitor nanostar and ligand stability and microbubble formation at different laser fluences. The capability of the platform for generating controlled localized heating was used to explore hyperthermia-assisted detachment of adherent glioblastoma cells (U87-GFP) grafted to the capillary walls. Both flow and laser fluence can be tuned to induce different biological responses, such as ablation, cell deformation, release of intracellular components, and the removal of intact cells. Ultimately, this platform has potential applications in biological and chemical sensing, hyperthermia-mediated drug delivery, and microfluidic soft-release of grafted cells with single-cell specificity.

15.
J Immunother Cancer ; 8(2)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900860

RESUMO

BACKGROUND: OX40 (CD134) is a costimulatory molecule of the tumor necrosis factor receptor superfamily that is currently being investigated as a target for cancer immunotherapy. However, despite promising results in murine tumor models, the clinical efficacy of agonistic αOX40 antibodies in the treatment of patients with cancer has fallen short of the high expectation in earlier-stage trials. METHODS: Using lymphocytes from resected tumor, tumor-free (TF) tissue and peripheral blood mononuclear cells (PBMC) of 96 patients with hepatocellular and colorectal cancers, we determined OX40 expression and the in vitro T-cell agonistic activity of OX40-targeting compounds. RNA-Seq was used to evaluate OX40-mediated transcriptional changes in CD4+ and CD8+ human tumor-infiltrating lymphocytes (TILs). RESULTS: Here, we show that OX40 was overexpressed on tumor-infiltrating CD4+ T cells compared with blood and TF tissue-derived T cells. In contrast to a clinical candidate αOX40 antibody, treatment with an Fc-engineered αOX40 antibody (αOX40_v12) with selectively enhanced FcγRIIB affinity, stimulated in vitro CD4+ and CD8+ TIL expansion, as well as cytokine and chemokine secretions. The activity of αOX40_v12 was dependent on FcγRIIB engagement and intrinsic CD3/CD28 signals. The transcriptional landscape of CD4+ and CD8+ TILs shifted toward a prosurvival, inflammatory and chemotactic profile on treatment with αOX40_v12. CONCLUSIONS: OX40 is overexpressed on CD4+ TILs and thus represents a promising target for immunotherapy. Targeting OX40 with currently used agonistic antibodies may be inefficient due to lack of OX40 multimerization. Thus, Fc engineering is a powerful tool in enhancing the agonistic activity of αOX40 antibody and may shape the future design of antibody-mediated αOX40 immunotherapy.


Assuntos
Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Receptores OX40/imunologia , Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos
16.
Immunohorizons ; 4(7): 382-391, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631900

RESUMO

Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of TCR-initiated signal transduction. Both the HPK1-/- mice and the genetically engineered mice with a point mutation that disrupts the catalytic activity of HPK1 possess enhanced antitumor immunity, especially when these mice are treated with anti-PD-L1 immune checkpoint Ab. Because CD4+FOXP3+ regulatory T cells (Tregs) play an important role in suppressing tumor immunity, we investigated whether the loss of HPK1 expression could result in the reduction of Treg functions. We found that the number of HPK1-/- Tregs is elevated relative to the number found in wild-type C57/BL6 mice. However, HPK1-/- Tregs lack the ability to carry out effective inhibition of TCR-induced proliferative responses by effector T cells. Furthermore, HPK1-/- Tregs respond to TCR engagement with an elevated and sustained Erk MAPK and p65/RelA NF-κB phosphorylation in comparison with wild-type Tregs. Also, a multiplex cytokine analysis of HPK1-/- Tregs revealed that they demonstrate an aberrant cytokine expression profile when stimulated by anti-CD3ε and anti-CD28 crosslinking, including the uncharacteristic expression of IL-2 and antitumor proinflammatory cytokines and chemokines such as IFN-γ, CCL3, and CCL4. The aberrant HPK1-/- phenotype observed in these studies suggests that HPK1 may play an important role in maintaining Treg functions with wider implications for HPK1 as a novel immunotherapeutic target.


Assuntos
NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Linhagem Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Camundongos , NF-kappa B/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Linfócitos T Reguladores/citologia
17.
ACS Appl Mater Interfaces ; 12(34): 38512-38521, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32657570

RESUMO

Solar desalination that exploits interfacial evaporation represents a promising solution to global water scarcity. Real-world feedstocks (e.g., natural seawater and contaminated water) include oil contamination issues, raising a compelling need for desalination systems that offer anti-oil-fouling capability; however, it is still challenging to prepare oil-repellent and meanwhile water-attracting surfaces. This work demonstrates a concept of molecularly dispersing functional F and Na sites on plasma-made vertically oriented graphene nanosheets to achieve an in-air and in-water oleophobic, hydrophilic surface. The graphene architecture presents high in-air (138°) and in-water (145°) oil contact angles, with simultaneously high water affinity (0°). Such surface wettability is enabled by oleophobic, hydrophobic -CFx, and hydrophilic -COONa groups of the molecules that disperse on graphene surfaces; low-dispersion (0.439 mJ m-2) and high-polarity (95.199 mJ m-2) components of the solid surface tension; and increased surface roughness produced by graphene edges. The graphene nanostructures pump water upward by capillary action but repel oil from the surface, leading to complete in-water and in-air oil rejection and universal anti-oil-fouling capability for solar desalination. Consequently, stable solar-vapor energy efficiency of more than 85% is achieved regardless of whether the feedstock is pure or oil-contaminated water (e.g., a mixture of oil floating on water, an oil-in-water emulsion), resulting in the efficient production of clean water over several days. This outstanding performance is attributed to the universal (both in-water and in-air) oleophobic wettability, together with high light absorptance contributed by nanotraps, fast interfacial heat transfer enhanced by finlike nanostructures, and accelerated evaporation enabled by sharp graphene edges.

18.
Oncotarget ; 11(15): 1344-1357, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32341754

RESUMO

P-cadherin-LP-DART is a bispecific antibody targeting P-cadherin expressed on the tumor cells and CD3 on the T-cells. Previously we demonstrated the development and efficacy of P-cadherin-LP-DART in in vitro and in vivo models. Here, we evaluated the three pillars: exposure, targeting specificity and pharmacodynamic modulation for P-cadherin-LP-DART using fluorescence molecular tomography (FMT). Bispecific antibodies and T-cells were conjugated with a near-infrared fluorophores: VivoTag®680XL (VT680) and CellVue®NIR815 (CV815), respectively. In vitro binding and cytotoxic T-lymphocyte assay demonstrated that P-cadherin-LP-DART significantly retained its properties after VT680 conjugation. In vivo FMT imaging was performed to determine the bispecific biodistribution and T-cell trafficking in HCT-116 xenograft model. Peak tumor exposure (2.71%ID) was observed at 96 hr post-injection with measurable quantity even at 240 hr (1.46%ID) (Pillar 1). P-cadherin-LP-DART accumulation in tumor was 20-25 fold higher compared to Control-LP-DART demonstrating the targeting specificity (Pillar 2). Imaging after engraftment of CV815 labeled T-cells showed P-cadherin-LP-DART mediated T-cell trafficking in tumors (Pillar 3). This study harnessed the multichannel capability of FMT and demonstrated the targeting of drug and trafficking of T cells to tumors, simultaneously. Our results show the impact of molecular imaging in demonstrating three pillars of pharmacology, longitudinally and non-invasively.

19.
ACS Nano ; 13(11): 13027-13036, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31660731

RESUMO

Oil spills remain a worldwide challenge and need emergency "spill-SOS" actions when they occur. Conventional methods suffer from complex processes and high cost. Here, we demonstrate a solar-heating siphon-capillary oil skimmer (S-SOS) that harvests solar energy, gravitational potential energy, and solid surface energy to enable efficient oil spill recovery in a self-pumping manner. The S-SOS is assembled by an inverted U-shape porous architecture combining solar-heating, siphon, and capillary effects, and works without any external power or manual interventions. Importantly, solid surface energy is used by capillary adsorption to enable the self-starting behavior, gravitational potential energy is utilized by siphon transport to drive the oil flow, and solar energy is harvested by solar-thermal conversion to facilitate the transport speed. In the proof-of-concept work, an all-carbon hierarchical architecture (VG/GF) is fabricated by growing vertically oriented graphene nanosheets (VGs) on a monolith of graphite felt (GF) via a plasma-enhanced method to serve as the U-shape architecture. Consequently, an oil-recovery rate of 35.2 L m-2 h-1 is obtained at ambient condition. When exposed to normal solar irradiation, the oil-recovery rate dramatically increases to 123.3 L m-2 h-1. Meanwhile, the solar-thermal energy efficiency is calculated to be 75.3%. Moreover, the S-SOS system presents excellent stability without obvious performance-degradation over 60 h. The outstanding performance is ascribed to the enhanced siphon action, capillary action, photonic absorption, and interfacial heating in the plasma-made graphene nanostructures. Multiple merits make the current S-SOS design and the VG/GF nanostructures promising for efficient oil recovery and transport of energy stored in chemical bonds.

20.
J Biol Chem ; 294(23): 9029-9036, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31018963

RESUMO

Hematopoietic progenitor kinase 1 (HPK1 or MAP4K1) is a Ser/Thr kinase that operates via the c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) signaling pathways to dampen the T-cell response and antitumor immunity. Accordingly, selective HPK1 inhibition is considered a means to enhance antitumor immunity. Sunitinib, a multi-receptor tyrosine kinase (RTK) inhibitor approved for the management of gastrointestinal stromal tumors (GISTs), renal cell carcinoma (RCC), and pancreatic cancer, has been reported to inhibit HPK1 in vitro In this report, we describe the crystal structures of the native HPK1 kinase domain in both nonphosphorylated and doubly phosphorylated states, in addition to a double phosphomimetic mutant (T165E,S171E), each complexed with sunitinib at 2.17-3.00-Å resolutions. The native nonphosphorylated cocrystal structure revealed an inactive dimer in which the activation loop of each monomer partially occupies the ATP- and substrate-binding sites of the partner monomer. In contrast, the structure of the protein with a doubly phosphorylated activation loop exhibited an active kinase conformation with a greatly reduced monomer-monomer interface. Conversely, the phosphomimetic mutant cocrystal structure disclosed an alternative arrangement in which the activation loops are in an extended domain-swapped configuration. These structural results indicate that HPK1 is a highly dynamic kinase that undergoes trans-regulation via dimer formation and extensive intramolecular and intermolecular remodeling of the activation segment.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Sunitinibe/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Humanos , Interleucina-2/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sunitinibe/química , Sunitinibe/farmacologia , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...