Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-514592

RESUMO

The rapid evolution of SARS-CoV-2 Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identify S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) and derived from an individual previously infected with SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrates broad cross-neutralization of all dominant variants including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1). Furthermore, it protected hamsters against in vivo challenges with wildtype, Delta, and BA.1 viruses. Structural analysis reveals that this antibody targets a class 1 epitope via multiple hydrophobic and polar interactions with its CDR-H3, in addition to common class 1 motifs in CDR-H1/CDR-H2. Importantly, this epitope is more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared to diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential, and may inform target-driven vaccine design against future SARS-CoV-2 variants.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-513804

RESUMO

Seasonal coronaviruses have been circulating widely in the human population for many years. With increasing age, humans are more likely to have been exposed to these viruses and to have developed immunity against them. It has been hypothesized that this immunity to seasonal coronaviruses may provide partial protection against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it has also been shown that coronavirus disease 2019 (COVID-19) vaccination induces a back-boosting effects against the spike proteins of seasonal betacoronaviruses. In this study, we tested if immunity to the seasonal coronavirus spikes from OC43, HKU1, 229E or NL63 would confer protection against SARS-CoV-2 challenge in a mouse model, and whether pre-existing immunity against these spikes would weaken the protection afforded by mRNA COVID-19 vaccination. We found that mice vaccinated with the seasonal coronavirus spike proteins had no increased protection as compared to the negative controls. While a negligible back-boosting effect against betacoronavirus spike proteins was observed after SARS-CoV-2 infection, there was no negative original antigenic sin-like effect on the immune response and protection induced by SARS-CoV-2 mRNA vaccination in animals with pre-existing immunity to seasonal coronavirus spike proteins. ImportanceThe impact that immunity against seasonal coronaviruses has on both susceptibility to SARS-CoV-2 infection as well as on COVID-19 vaccination is unclear. This study provides insights into both questions in a mouse model of SARS-CoV-2.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277281

RESUMO

Cancer patients show increased morbidity with COVID-19 and need effective immunization strategies. We demonstrate that a 3rd dose of COVID-19 vaccine leads to seroconversion in 57% of patients that were seronegative after primary vaccination. The immune response is durable as assessed by anti-S antibody titers, T-cell activity and neutralization activity against wild-type SARS-CoV2 and BA1.1.529 at 6 months of follow up. A subset of severely immunocompromised hematologic malignancy patients were unable to mount adequate immune response after the 3rd dose and were treated with a 4th dose in a prospective clinical trial which led to adequate immune-boost in 67% of patients. Low baseline IgM levels and CD19 counts were associated with inadequate seroconversion. Booster doses induced limited neutralization activity against the Omicron variant. These results indicate that vaccine booster-induced immunity is durable in cancer patients and additional doses can further stimulate immunity in a subset of hematologic malignancy patients. Statement of significanceWe demonstrate that a 3rd dose of vaccine leads to seroconversion in 57% of negative patients with durable immune responses at 6 months. A 4th dose of vaccine can seroconvert hematologic malignancy patients with higher baseline IgM and CD19 levels.

4.
- IMPACC group; Al Ozonoff; Joanna Schaenman; Naresh Doni Jayavelu; Carly E. Milliren; Carolyn S. Calfee; Charles B. Cairns; Monica Kraft; Lindsey R. Baden; Albert C. Shaw; Florian Krammer; Harm Van Bakel; Denise Esserman; Shanshan Liu; Ana Fernandez Sesma; Viviana Simon; David A. Hafler; Ruth R. Montgomery; Steven H. Kleinstein; Ofer Levy; Christian Bime; Elias K. Haddad; David J. Erle; Bali Pulendran; Kari C. Nadeau; Mark M. Davis; Catherine L. Hough; William B. Messer; Nelson I. Agudelo Higuita; Jordan P. Metcalf; Mark A. Atkinson; Scott C. Brakenridge; David B. Corry; Farrah Kheradmand; Lauren I. R. Ehrlich; Esther Melamed; Grace A. McComsey; Rafick Sekaly; Joann Diray-Arce; Bjoern Peters; Alison D. Augustine; Elaine F. Reed; Kerry McEnaney; Brenda Barton; Claudia Lentucci; Mehmet Saluvan; Ana C. Chang; Annmarie Hoch; Marisa Albert; Tanzia Shaheen; Alvin Kho; Sanya Thomas; Jing Chen; Maimouna D. Murphy; Mitchell Cooney; Scott Presnell; Leying Guan; Jeremy Gygi; Shrikant Pawar; Anderson Brito; Zain Khalil; James A. Overton; Randi Vita; Kerstin Westendorf; Cole Maguire; Slim Fourati; Ramin Salehi-Rad; Aleksandra Leligdowicz; Michael Matthay; Jonathan Singer; Kirsten N. Kangelaris; Carolyn M. Hendrickson; Matthew F. Krummel; Charles R. Langelier; Prescott G. Woodruff; Debra L. Powell; James N. Kim; Brent Simmons; I.Michael Goonewardene; Cecilia M. Smith; Mark Martens; Jarrod Mosier; Hiroki Kimura; Amy Sherman; Stephen Walsh; Nicolas Issa; Charles Dela Cruz; Shelli Farhadian; Akiko Iwasaki; Albert I. Ko; Evan J. Anderson; Aneesh Mehta; Jonathan E. Sevransky; Sharon Chinthrajah; Neera Ahuja; Angela Rogers; Maja Artandi; Sarah A.R. Siegel; Zhengchun Lu; Douglas A. Drevets; Brent R. Brown; Matthew L. Anderson; Faheem W. Guirgis; Rama V. Thyagarajan; Justin Rousseau; Dennis Wylie; Johanna Busch; Saurin Gandhi; Todd A. Triplett; George Yendewa; Olivia Giddings; Tatyana Vaysman; Bernard Khor; Adeeb Rahman; Daniel Stadlbauer; Jayeeta Dutta; Hui Xie; Seunghee Kim-Schulze; Ana Silvia Gonzalez-Reiche; Adriana van de Guchte; Holden T. Maecker; Keith Farrugia; Zenab Khan; Joanna Schaenman; Elaine F. Reed; Ramin Salehi-Rad; David Elashoff; Jenny Brook; Estefania Ramires-Sanchez; Megan Llamas; Adreanne Rivera; Claudia Perdomo; Dawn C. Ward; Clara E. Magyar; Jennifer Fulcher; Yumiko Abe-Jones; Saurabh Asthana; Alexander Beagle; Sharvari Bhide; Sidney A. Carrillo; Suzanna Chak; Rajani Ghale; Ana Gonzales; Alejandra Jauregui; Norman Jones; Tasha Lea; Deanna Lee; Raphael Lota; Jeff Milush; Viet Nguyen; Logan Pierce; Priya Prasad; Arjun Rao; Bushra Samad; Cole Shaw; Austin Sigman; Pratik Sinha; Alyssa Ward; Andrew - Willmore; Jenny Zhan; Sadeed Rashid; Nicklaus Rodriguez; Kevin Tang; Luz Torres Altamirano; Legna Betancourt; Cindy Curiel; Nicole Sutter; Maria Tercero Paz; Gayelan Tietje-Ulrich; Carolyn Leroux; Jennifer Connors; Mariana Bernui; Michele Kutzler; Carolyn Edwards; Edward Lee; Edward Lin; Brett Croen; Nicholas Semenza; Brandon Rogowski; Nataliya Melnyk; Kyra Woloszczuk; Gina Cusimano; Matthew Bell; Sara Furukawa; Renee McLin; Pamela Marrero; Julie Sheidy; George P. Tegos; Crystal Nagle; Nathan Mege; Kristen Ulring; Vicki Seyfert-Margolis; Michelle Conway; Dave Francisco; Allyson Molzahn; Heidi Erickson; Connie Cathleen Wilson; Ron Schunk; Trina Hughes; Bianca Sierra; Kinga K. Smolen; Michael Desjardins; Simon van Haren; Xhoi Mitre; Jessica Cauley; Xiofang Li; Alexandra Tong; Bethany Evans; Christina Montesano; Jose Humberto Licona; Jonathan Krauss; Jun Bai Park Chang; Natalie Izaguirre; Omkar Chaudhary; Andreas Coppi; John Fournier; Subhasis Mohanty; M. Catherine Muenker; Allison Nelson; Khadir Raddassi; Michael Rainone; William Ruff; Syim Salahuddin; Wade L. Schulz; Pavithra Vijayakumar; Haowei Wang; Elsio Wunder Jr.; H. Patrick Young; Yujiao Zhao; Miti Saksena; Deena Altman; Erna Kojic; Komal Srivastava; Lily Q. Eaker; Maria Carolina Bermudez; Katherine F. Beach; Levy A. Sominsky; Arman Azad; Juan Manuel Carreno; Gagandeep Singh; Ariel Raskin; Johnstone Tcheou; Dominika Bielak; Hisaaki Kawabata; Lubbertus CF Mulder; Giulio Kleiner; Laurel Bristow; Laila Hussaini; Kieffer Hellmeister; Hady Samaha; Andrew Cheng; Christine Spainhour; Erin M. Scherer; Brandi Johnson; Amer Bechnak; Caroline R. Ciric; Lauren Hewitt; Bernadine Panganiban; Chistopher Huerta; Jacob Usher; Erin Carter; Nina Mcnair; Susan Pereira Ribeiro; Alexandra S. Lee; Evan Do; Andrea Fernandes; Monali Manohar; Thomas Hagan; Catherine Blish; Hena Naz Din; Jonasel Roque; Samuel S. Yang; Amanda E. Brunton; Peter E. Sullivan; Matthew Strnad; Zoe L. Lyski; Felicity J. Coulter; John L. Booth; Lauren A. Sinko; Lyle Moldawer; Brittany Borrensen; Brittney Roth-Manning; Li-Zhen Song; Ebony Nelson; Megan Lewis-Smith; Jacob Smith; Pablo Guaman Tipan; Nadia Siles; Sam Bazzi; Janelle Geltman; Kerin Hurley; Giovanni Gabriele; Scott Sieg; Matthew C. Altman; Patrice M. Becker; Nadine Rouphael.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273396

RESUMO

BackgroundBetter understanding of the association between characteristics of patients hospitalized with coronavirus disease 2019 (COVID-19) and outcome is needed to further improve upon patient management. MethodsImmunophenotyping Assessment in a COVID-19 Cohort (IMPACC) is a prospective, observational study of 1,164 patients from 20 hospitals across the United States. Disease severity was assessed using a 7-point ordinal scale based on degree of respiratory illness. Patients were prospectively surveyed for 1 year after discharge for post-acute sequalae of COVID-19 (PASC) through quarterly surveys. Demographics, comorbidities, radiographic findings, clinical laboratory values, SARS-CoV-2 PCR and serology were captured over a 28-day period. Multivariable logistic regression was performed. FindingsThe median age was 59 years (interquartile range [IQR] 20); 711 (61%) were men; overall mortality was 14%, and 228 (20%) required invasive mechanical ventilation. Unsupervised clustering of ordinal score over time revealed distinct disease course trajectories. Risk factors associated with prolonged hospitalization or death by day 28 included age [≥] 65 years (odds ratio [OR], 2.01; 95% CI 1.28-3.17), Hispanic ethnicity (OR, 1.71; 95% CI 1.13-2.57), elevated baseline creatinine (OR 2.80; 95% CI 1.63-4.80) or troponin (OR 1.89; 95% 1.03-3.47), baseline lymphopenia (OR 2.19; 95% CI 1.61-2.97), presence of infiltrate by chest imaging (OR 3.16; 95% CI 1.96-5.10), and high SARS-CoV2 viral load (OR 1.53; 95% CI 1.17-2.00). Fatal cases had the lowest ratio of SARS-CoV-2 antibody to viral load levels compared to other trajectories over time (p=0.001). 589 survivors (51%) completed at least one survey at follow-up with 305 (52%) having at least one symptom consistent with PASC, most commonly dyspnea (56% among symptomatic patients). Female sex was the only associated risk factor for PASC. InterpretationIntegration of PCR cycle threshold, and antibody values with demographics, comorbidities, and laboratory/radiographic findings identified risk factors for 28-day outcome severity, though only female sex was associated with PASC. Longitudinal clinical phenotyping offers important insights, and provides a framework for immunophenotyping for acute and long COVID-19. FundingNIH RESEARCH IN CONTEXTO_ST_ABSEvidence before this studyC_ST_ABSWe did a systematic search of the PubMed database from January 1st, 2020 until April 24th, 2022 using the search terms: "hospitalized" AND "SARS-CoV-2" OR "COVID-19" AND "Pro-spective" AND "Antibody" OR "PCR" OR "long term follow up" and applying the following filters: "Multicenter Study" AND "Observational Study". No language restrictions were applied. While clinical, laboratory, and radiographic features associated with severe COVID-19 in hospitalized adults have been described, description of the kinetics of SARS-CoV-2 specific assays available to clinicians (e.g. PCR and binding antibody) and their integration with other variables is scarce for both short and long term follow up. The current literature is comprised of several studies with small sample size, cross-sectional design with laboratory data typically only recorded at a single point in time (e.g., on admission), limited clinical characteristics, variable duration of follow up, single-center setting, retrospective analyses, kinetics of either PCR or antibody testing but not both, and outcomes such as death or, mechanical ventilation that do not allow delineation of variations in clinical course. Added value of this studyIn our large longitudinal multicenter cohort, the description of outcome severity, was not limited to survival versus death, but encompassed a clinical trajectory approach leveraging longitudinal data based on time in hospital, disease severity by ordinal scale based on degree of respiratory illness, and presence or absence of limitations at discharge. Fatal COVID-19 cases had the lowest ratio of antibody to viral load levels over time as compared to non-fatal cases. Integration of PCR cycle threshold and antibody values with demographics, baseline comorbidities, and laboratory/radiographic findings identified additional risk factors for outcome severity over the first 28 days. However, female sex was the only variable associated with persistence of symptoms over time. Persistence of symptoms was not associated with clinical trajectory over the first 28 days, nor with antibody/viral loads from the acute phase. Implications of all the available evidenceThe described calculated ratio (binding IgG/PCR Ct value) is unique compared to other studies, reflecting host pathogen interactions and representing an accessible approach for patient risk stratification. Integration of SARS-CoV-2 viral load and binding antibody kinetics with other laboratory as well as clinical characteristics in hospitalized COVID-19 patients can identify patients likely to have the most severe short-term outcomes, but is not predictive of symptom persistence at one year post-discharge.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276253

RESUMO

ImportancePeople living with multiple sclerosis (MS) and other disorders treated with immunomodulatory therapies remain concerned about suboptimal responses to coronavirus disease 2019 (COVID-19) vaccines. Important questions persist regarding immunological response to third vaccines, particularly with respect to newer virus variants. ObjectiveEvaluate humoral and cellular immune responses to third COVID-19 vaccine dose in people on anti-CD20 therapy and sphingosine 1-phosphate receptor (S1PR) modulators, including Omicron-specific assays. DesignObservational study evaluating immunological response to third COVID-19 vaccine dose in volunteers treated with anti-CD20 agents, S1PR modulators, and healthy controls. Neutralizing antibodies against USA-WA1/2020 (WA1) and B.1.1.529 (BA.1) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were measured before and after third vaccine. Cellular responses to spike peptide pools generated from WA1 and BA.1 were evaluated. SettingMount Sinai Hospital ParticipantsPeople treated with anti-CD20 therapy or S1PR modulators and healthy volunteers ExposureTreatment with anti-CD20 therapy, S1PR modulator, or neither Main outcomes and measuresSerum neutralizing antibodies and ex vivo T cell responses against SARS-CoV-2 antigens. ResultsThis cohort includes 25 participants on anti-CD20 therapy, 12 on S1PR modulators, and 14 healthy controls. Among those on anti-CD20 therapy, neutralizing antibodies to WA1 were significantly reduced compared to healthy controls (ID50% GM post-vaccination of 8.1 {+/-} 2.8 in anti-CD20 therapy group vs 452.6 {+/-} 8.442 healthy controls, P<0.0001) and neutralizing antibodies to BA.1 were below the threshold of detection nearly universally. However, cellular responses, including to Omicron-specific peptides, were not significantly different from controls. Among those on S1PR modulators, neutralizing antibodies to WA1 were detected in a minority, and only 3/12 had neutralizing antibodies just at the limit of detection to BA.1. Cellular responses to Spike antigen in those on S1PR modulators were reduced by a factor of 100 compared to controls (median 0.0008% vs. 0.08%, p<0.001) and were not significantly "boosted" by a third injection. Conclusions and RelevanceParticipants on immunomodulators had impaired antibody neutralization capacity, particularly to BA.1, even after a third vaccine. T cell responses were not affected by anti-CD20 therapies, but were nearly abrogated by S1PR modulators. These results have clinical implications warranting further study.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275533

RESUMO

AO_SCPLOWBSTRACTC_SCPLOWPersistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have been reported in immune-compromised individuals and people undergoing immune-modulatory treatments. Although intrahost evolution has been documented, to our knowledge, no direct evidence of subsequent transmission and stepwise adaptation is available. Here we describe sequential persistent SARS-CoV-2 infections in three individuals that led to the emergence, forward transmission, and continued evolution of a new Omicron sublineage, BA.1.23, over an eight-month period. The initially transmitted BA.1.23 variant encoded seven additional amino acid substitutions within the spike protein (E96D, R346T, L455W, K458M, A484V, H681R, A688V), and displayed substantial resistance to neutralization by sera from boosted and/or Omicron BA.1-infected study participants. Subsequent continued BA.1.23 replication resulted in additional substitutions in the spike protein (S254F, N448S, F456L, M458K, F981L, S982L) as well as in five other virus proteins. Our findings demonstrate that the Omicron BA.1 lineage can diverge further from its already exceptionally mutated genome during persistent infection in more than one host, and also document ongoing transmission of these novel variants. There is an urgent need to implement strategies to prevent prolonged SARS-CoV-2 replication and to limit the spread of newly emerging, neutralization-resistant variants in vulnerable patients.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-493765

RESUMO

We report the engineering and selection of two synthetic proteins - FSR16m and FSR22 - for possible treatment of SARS-CoV-2 infection. FSR16m and FSR22 are trimeric proteins composed of DARPin SR16m or SR22 fused with a T4 foldon and exhibit broad spectrum neutralization of SARS-Cov-2 strains. The IC50 values of FSR16m against authentic B.1.351, B.1.617.2 and BA.1.1 variants are 3.4 ng/mL, 2.2 ng/mL and 7.4 ng/mL, respectively, comparable to currently used therapeutic antibodies. Despite the use of the spike protein from a now historical wild-type virus for design, FSR16m and FSR22 both exhibit increased neutralization against newly-emerged variants of concern (39- to 296-fold) in pseudovirus assays. Cryo-EM structures revealed that these DARPins recognize a region of the receptor binding domain (RBD, residues 455-456, 486-489) overlapping a critical portion of the ACE2-binding surface. K18-hACE2 transgenic mice inoculated with a B.1.617.2 variant and receiving intranasally-administered FSR16m were protected as judged by less weight loss and 10-100-fold reductions in viral burden in the upper and lower respiratory tracts. The strong and broad neutralization potency make FSR16m and FSR22 promising candidates for prevention and treatment of infection by current and potential future strains of SARS-CoV-2.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273872

RESUMO

It is uncertain to which extent antibody and T-cell responses after vaccination against SARS-CoV-2 are associated with reduced risk of breakthrough infection and whether their measurement enhances risk prediction. We conducted a phase-4 open-label clinical trial in the pre-omicron era, enrolling 2,760 individuals aged [≥]16 years 35{+/-}8 days after having received the second dose of BNT162b2 (baseline 15-21 May 2021). Over a median 5.9-month of follow-up, we identified incident SARS-CoV-2 breakthrough infections using weekly antigen tests, a confirmatory PCR test, and/or serological evidence for incident infection. We quantified relative risks adjusted for age, sex, and prior SARS-CoV-2 infection for different immunological parameters and assessed improvements in risk discrimination. In contrast to the T-cell response, higher plasma levels of binding antibodies and antibodies in a surrogate neutralization assay were associated with reduced risk of breakthrough infection. Furthermore, assessment of anti-spike IgG levels enhanced prediction of breakthrough infection and may therefore be a suitable measurable correlate of protection in practice.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273938

RESUMO

BackgroundBreakthrough infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) has occurred in populations with high vaccination rates. These infections are due to sequence variation in the spike protein leading to a reduction in protection afforded by the current vaccines, which are based on the original Wuhan-Hu-1 strain, or by natural infection with pre-Omicron strains. MethodsIn a longitudinal cohort study, pre-breakthrough infection sera for Omicron breakthroughs (n=12) were analyzed. Assays utilized include a laboratory-developed solid phase binding assay to recombinant spike protein, a commercial assay to the S1 domain of the spike protein calibrated to the World Health Organization (WHO) standard, and a commercial solid-phase surrogate neutralizing activity (SNA) assay. All assays employed spike protein preparations based on sequences from the Wuhan-Hu-1 strain. Participant demographics and clinical characteristics were captured. ResultsPre-breakthrough binding antibody (bAB) titers ranged from 1:800-1:51,200 for the laboratory-developed binding assay, which correlated well and agreed quantitatively with the commercial spike S1 domain WHO calibrated assay. SNA was detected in 10/12 (83%) samples. ConclusionsNeither high bAB nor SNA were markers of protection from Omicron infection/re-infection. Laboratory tests with antigen targets based on Wuhan-Hu-1 may not accurately reflect the degree of immune protection from variants with significant spike protein differences. Omicron breakthrough infections are likely due to high sequence variation of the spike protein and reflect incomplete immune protection from previous infection with strains that preceded Omicron or with vaccinations based on the original Wuhan-Hu-1 strain.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273914

RESUMO

Two messenger RNA (mRNA)-based vaccines are widely used globally to prevent coronavirus disease 2019 (COVID-19). Both vaccine formulations contain PEGylated lipids in their composition, in the form of polyethylene glycol [PEG] 2000 dimyristoyl glycerol for mRNA-1273, and 2 [(polyethylene glycol)-2000]-N,N-ditetradecylacetamide for BNT162b2. It is known that some PEGylated drugs and products for human use that contain PEG, are capable of eliciting immune responses, leading to detectable PEG-specific antibodies in serum. In this study, we determined if any of the components of mRNA-1273 or BNT162b2 formulations elicited PEG-specific antibody responses in serum by enzyme linked immunosorbent assay (ELISA). We detected an increase in the reactivity to mRNA vaccine formulations in mRNA-1273 but not BNT162b2 vaccinees sera in a prime-boost dependent manner. Furthermore, we observed the same pattern of reactivity against irrelevant lipid nanoparticles from an influenza virus mRNA formulation and found that the reactivity of such antibodies correlated well with antibody levels against high and low molecular weight PEG. Using sera from participants selected based on the vaccine-associated side effects experienced after vaccination, including delayed onset, injection site or severe allergic reactions, we found no obvious association between PEG antibodies and adverse reactions. Overall, our data shows a differential induction of anti-PEG antibodies by mRNA-1273 and BNT162b2. The clinical relevance of PEG reactive antibodies induced by administration of the mRNA-1273 vaccine, and the potential interaction of these antibodies with other PEGylated drugs remains to be explored.

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-485247

RESUMO

Equitable access to vaccines is necessary to limit the global impact of the coronavirus disease 2019 (COVID-19) pandemic and the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. In previous studies, we described the development of a low-cost vaccine based on a Newcastle Disease virus (NDV) expressing the prefusion stabilized spike protein from SARS-CoV-2, named NDV-HXP-S. Here, we present the development of next-generation NDV-HXP-S variant vaccines, which express the stabilized spike protein of the Beta, Gamma and Delta variants of concerns (VOC). Combinations of variant vaccines in bivalent, trivalent and tetravalent formulations were tested for immunogenicity and protection in mice. We show that the trivalent preparation, composed of the ancestral Wuhan, Beta and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant.

12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273068

RESUMO

AO_SCPLOWBSTRACTC_SCPLOWThe PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2) cohort follows health care workers with and without documented coronavirus disease 2019 (COVID-19) since April 2020. We report our findings regarding SARS-CoV-2 spike binding antibody stability and protection from infection in the pre-variant era. We analyzed data from 400 healthcare workers (150 seropositive and 250 seronegative at enrollment) for a median of 84 days. The SARS-CoV-2 spike binding antibody titers were highly variable with antibody levels decreasing over the first three months, followed by a relative stabilization. We found that both more advanced age (>40 years) and female sex were associated with higher antibody levels (1.6-fold and 1.4-fold increases, respectively). Only six percent of the initially seropositive participants "seroreverted". We documented a total of 11 new SARS-CoV-2 infections (ten naive participants, one previously infected participant without detectable antibodies, p<0.01) indicating that spike antibodies limit the risk of re-infection. These observations, however, only apply to SARS-CoV-2 variants antigenically similar to the ancestral SARS-CoV-2 ones. In conclusion, SARS-CoV-2 antibody titers mounted upon infection are stable over several months in most people and provide protection from infection with antigenically similar viruses. summaryThe levels of SARS-CoV-2 spike binding antibodies mounted upon infection with ancestral SARS-CoV-2 variants are highly variable, stabilize at an individual level after three months and provide protection from infection with homologous virus.

13.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22271399

RESUMO

BackgroundIn October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies." SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. MethodsTo facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. SARS-CoV-2 serology standard reference material and First WHO International Standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. ResultsSeroNet institutions reported development of a total of 27 ELISA methods, 13 multiplex assays, 9 neutralization assays, and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. ConclusionsSeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 virus and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270676

RESUMO

There is still a need for safe, efficient and low-cost coronavirus disease 2019 (COVID-19) vaccines that can stop transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we evaluated a vaccine candidate based on a live recombinant Newcastle disease virus (NDV) that expresses a stable version of the spike protein in infected cells as well as on the surface of the viral particle (AVX/COVID-12-HEXAPRO, also known as NDV-HXP-S). This vaccine candidate can be grown in embryonated eggs at low cost similar to influenza virus vaccines and it can also be administered intranasally, potentially to induce mucosal immunity. We evaluated this vaccine candidate in prime-boost regimens via intramuscular, intranasal, or intranasal followed by intramuscular routes in an open label non-randomized non-placebo-controlled phase I clinical trial in Mexico in 91 volunteers. The primary objective of the trial was to assess vaccine safety and the secondary objective was to determine the immunogenicity of the different vaccine regimens. In the interim analysis reported here, the vaccine was found to be safe and the higher doses tested were found to be immunogenic when given intramuscularly or intranasally followed by intramuscular administration, providing the basis for further clinical development of the vaccine candidate. The study is registered under ClinicalTrials.gov identifier NCT04871737. Funding was provided by Avimex and CONACYT.

15.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270253

RESUMO

Production of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and middle-income countries is needed. NDV-HXP-S is an inactivated egg-based Newcastle disease virus (NDV) vaccine expressing the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Wuhan-Hu-1. The spike protein was stabilized and incorporated into NDV virions by removing the polybasic furin cleavage site, introducing the transmembrane domain and cytoplasmic tail of the fusion protein of NDV, and introducing six prolines for stabilization in the prefusion state. Vaccine production and clinical development was initiated in Vietnam, Thailand, and Brazil. Here the interim results from the first stage of the randomized, dose-escalation, observer-blind, placebo-controlled, phase 1/2 trial conducted at the Hanoi Medical University (Vietnam) are presented. Healthy adults aged 18-59 years, non-pregnant, and with self-reported negative history for SARS-CoV-2 infection were eligible. Participants were randomized to receive one of five treatments by intramuscular injection twice, 28 days apart: 1 g +/-CpG1018 (a toll-like receptor 9 agonist), 3 g alone, 10 g alone, or placebo. Participants and personnel assessing outcomes were masked to treatment. The primary outcomes were solicited adverse events (AEs) during 7 days and subject-reported AEs during 28 days after each vaccination. Investigators further reviewed subject-reported AEs. Secondary outcomes were immunogenicity measures (anti-spike immunoglobulin G [IgG] and pseudotyped virus neutralization). This interim analysis assessed safety 56 days after first vaccination (day 57) in treatment-exposed individuals and immunogenicity through 14 days after second vaccination (day 43) per protocol. Between March 15 and April 23, 2021, 224 individuals were screened and 120 were enrolled (25 per group for active vaccination and 20 for placebo). All subjects received two doses. The most common solicited AEs among those receiving active vaccine or placebo were all predominantly mild and included injection site pain or tenderness (<58%), fatigue or malaise (<22%), headache (<21%), and myalgia (<14%). No higher proportion of the solicited AEs were observed for any group of active vaccine. The proportion reporting vaccine-related AEs during the 28 days after either vaccination ranged from 4% to 8% among vaccine groups and was 5% in controls. No vaccine-related serious adverse event occurred. The immune response in the 10 g formulation group was highest, followed by 1 g +CpG1018, 3 g, and 1 g formulations. Fourteen days after the second vaccination, the geometric mean concentrations (GMC) of 50% neutralizing antibody against the homologous Wuhan-Hu-1 pseudovirus ranged from 56.07 IU/mL (1 g, 95% CI 37.01, 84.94) to 246.19 IU/mL (10 g, 95% CI 151.97, 398.82), with 84% to 96% of vaccine groups attaining a [≥] 4-fold increase over baseline. This was compared to a panel of human convalescent sera (N=29, 72.93 95% CI 33.00-161.14). Live virus neutralization to the B.1.617.2 (Delta) variant of concern was reduced but in line with observations for vaccines currently in use. Since the adjuvant has shown modest benefit, GMC ratio of 2.56 (95% CI, 1.4 - 4.6) for 1 g +/-CpG1018, a decision was made not to continue studying it with this vaccine. NDV-HXP-S had an acceptable safety profile and potent immunogenicity. The 3 g dose was advanced to phase 2 along with a 6 g dose. The 10 g dose was not selected for evaluation in phase 2 due to potential impact on manufacturing capacity. ClinicalTrials.gov NCT04830800.

16.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-477987

RESUMO

During the SARS-CoV-2 pandemic, multiple variants with differing amounts of escape from pre-existing immunity have emerged, causing concerns about continued protection. Here, we use antigenic cartography to quantify and visualize the antigenic relationships among 16 SARS-CoV-2 variants titrated against serum samples taken post-vaccination and post-infection with seven different variants. We find major antigenic differences caused by substitutions at spike positions 417, 452, 484, and possibly 501. B.1.1.529 (Omicron BA.1) showed the highest escape from all sera tested. Visualization of serological responses as antibody landscapes shows how reactivity clusters in different regions of antigenic space. We find changes in immunodominance of different spike regions depending on the variant an individual was exposed to, with implications for variant risk assessment and vaccine strain selection. One sentence summaryAntigenic Cartography of SARS-CoV-2 variants reveals amino acid substitutions governing immune escape and immunodominance patterns.

17.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-476998

RESUMO

The continual emergence of SARS-CoV-2 variants of concern, in particular the newly emerged Omicron (B.1.1.529) variant, has rendered ineffective a number of previously EUA approved SARS-CoV-2 neutralizing antibody therapies. Furthermore, even those approved antibodies with neutralizing activity against Omicron are reportedly ineffective against the subset of Omicron variants that contain a R346K substitution, demonstrating the continued need for discovery and characterization of candidate therapeutic antibodies with the breadth and potency of neutralizing activity required to treat newly diagnosed COVID-19 linked to recently emerged variants of concern. Following a campaign of antibody discovery based on the vaccination of Harbour H2L2 mice with defined SARS-CoV-2 spike domains, we have characterized the activity of a large collection of Spike-binding antibodies and identified a lead neutralizing human IgG1 LALA antibody, STI-9167. STI-9167 has potent, broad-spectrum neutralizing activity against the current SARS-COV-2 variants of concern and retained activity against the Omicron and Omicron + R346K variants in both pseudotype and live virus neutralization assays. Furthermore, STI-9167 nAb administered intranasally or intravenously provided protection against weight loss and reduced virus lung titers to levels below the limit of quantitation in Omicron-infected K18-hACE2 transgenic mice. With this established activity profile, a cGMP cell line has been developed and used to produce cGMP drug product intended for use in human clinical trials.

18.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474908

RESUMO

ObjectiveDysregulation of the immune system during pregnancy is associated with adverse pregnancy outcomes. Recent studies report cytokine changes during the acute phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We examine whether there is a lasting association between SARS-CoV-2 infection during pregnancy and peripheral blood cytokine levels. Study designWe conducted a case-control study at the Mount Sinai health system in NYC including 100 SARS-CoV-2 IgG antibody positive people matched to 100 SARS-CoV-2 IgG antibody negative people on age, race/ethnicity, parity, and insurance status. Blood samples were collected at a median gestational age of 34 weeks. Levels of 14 cytokines were measured. ResultsIndividual cytokine levels and cytokine cluster Eigenvalues did not differ significantly between groups, indicating no persisting maternal cytokine changes after SARS-CoV-2 infection during pregnancy. ConclusionOur findings suggest that the acute inflammatory response after SARS-CoV-2 infection may be restored to normal values during pregnancy.

19.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269808

RESUMO

NDV-HXP-S is a recombinant Newcastle disease virus based-vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which expresses an optimized (HexaPro) spike protein on its surface. The vaccine can be produced in embryonated chicken eggs using the same process as that employed for the production of influenza virus vaccines. Here we performed a secondary analysis of the antibody responses after vaccination with inactivated NDV-HXP-S in a Phase I clinical study in Thailand. The SARS-CoV-2 neutralizing and spike binding activity of NDV-HXP-S post-vaccination serum samples was compared to that of matched samples from mRNA BNT162b2 (Pfizer) vaccinees. Neutralizing activity of sera from NDV-HXP-S vaccinees was comparable to that of individuals vaccinated with BNT162b2. Interstingly, the spike binding activity of the NDV-HXP-S vaccinee samples was lower than that of sera obtained from individuals vaccinated with the mRNA vaccine. This let us to calculate ratios between binding and neutralizing antibody titers. Samples from NDV-HXP-S vaccinees had binding to neutralizing activity ratios similar to those of convalescent sera suggesting a very high proportion of neutralizing antibodies and low non-neutralizing antibody titers. Further analysis showed that, in contrast to mRNA vaccination, which induces strong antibody titers to the receptor binding domain (RBD), the N-terminal domain, and the S2 domain, NDV-HXP-S vaccination induces a very RBD focused response with little reactivity to S2. This explains the high proportion of neutralizing antibodies since most neutralizing epitopes are located in the RBD. In conclusion, vaccination with inactivated NDV-HXP-S induces a high proportion of neutralizing antibodies and absolute neutralizing antibody titers comparable to those after mRNA vaccination.

20.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268134

RESUMO

The B.1.1.529 (Omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in November of 2021 in South Africa and Botswana as well as in a sample of a traveler from South Africa in Hong Kong.1,2 Since then, B.1.1.529 has been detected in many countries globally. This variant seems to be more infectious than B.1.617.2 (Delta), has already caused super spreader events3 and has outcompeted Delta within weeks in several countries and metropolitan areas. B.1.1.529 hosts an unprecedented number of mutations in its spike gene and early reports have provided evidence for extensive immune escape and reduced vaccine effectiveness.2,4-6 Here, we investigated the neutralizing and binding activity of sera from convalescent, mRNA double vaccinated, mRNA boosted as well as convalescent double vaccinated and convalescent boosted individuals against wild type, B.1.351 and B.1.1.529 SARS-CoV-2 isolates. Neutralizing activity of sera from convalescent and double vaccinated participants was undetectable to very low against B.1.1.529 while neutralizing activity of sera from individuals who had been exposed to spike three or four times was maintained, albeit at strongly reduced levels. Binding to the B.1.1.529 receptor binding domain (RBD) and N-terminal domain (NTD) was reduced in convalescent not vaccinated but was mostly retained in vaccinated individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...