Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Drug Metab Dispos ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38290748

RESUMO

Physiologically-based pharmacokinetic (PBPK) modeling is a mechanistic dynamic modeling approach that can be used to predict or retrospectively describe changes in drug exposure due to drug-drug interactions. With advancements in commercially available PBPK software, PBPK DDI modeling has become a mainstream approach from early drug discovery through to late stage drug development and is often utilized to support regulatory packages for new drug applications. This minireview will briefly describe the approaches to predicting DDI utilizing PBPK and static modeling approaches, the basic model structures and features inherent to PBPK DDI models and key examples where PBPK DDI models have been used to describe complex DDI mechanisms. Future directions aimed at using PBPK models to characterize transporter-mediated DDI, predict DDI in special populations and assess the DDI potential of protein therapeutics will be discussed. A summary of the 209 PBPK DDI examples published to date in 2023 will be provided. Overall, current data and trends suggest a continued role for PBPK models in the characterization and prediction of DDI for therapeutic molecules. Significance Statement PBPK models have been a key tool in the characterization of various pharmacokinetic phenomenon, including drug-drug interactions. This minireview will highlight recent advancements and publications around PBPK DDI modeling, an important area of drug discovery and development research in light of the increasing prevalence of polypharmacology in clinical settings.

2.
J Med Chem ; 66(23): 15586-15612, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37769129

RESUMO

Technologies currently employed to find and identify drug metabolites in complex biological matrices generally yield results that offer a comprehensive picture of the drug metabolite profile. However, drug metabolites can be missed or are captured only late in the drug development process. This could be due to a variety of factors, such as metabolism that results in partial loss of the molecule, covalent bonding to macromolecules, the drug being metabolized in specific human tissues, or poor ionization in a mass spectrometer. These scenarios often draw a great deal of attention from chemistry, safety assessment, and pharmacology. This review will summarize scenarios of missing metabolites, why they are missing, and associated uncovering strategies from deeper investigations. Uncovering previously missed metabolites can have ramifications in drug development with toxicological and pharmacological consequences, and knowledge of these can help in the design of new drugs.


Assuntos
Desenvolvimento de Medicamentos , Humanos , Espectrometria de Massas , Preparações Farmacêuticas
3.
Drug Metab Dispos ; 51(8): 936-949, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37041085

RESUMO

Cytochrome P450 and other families of drug-metabolizing enzymes are commonly thought of and studied for their ability to metabolize xenobiotics and other foreign entities as they are eliminated from the body. Equally as important, however, is the homeostatic role that many of these enzymes play in maintaining the proper levels of endogenous signaling molecules such as lipids, steroids, and eicosanoids as well as their ability to modulate protein-protein interactions involved in downstream signaling cascades. Throughout the years, many of these endogenous ligands or protein partners of drug-metabolizing enzymes have been associated with a wide range of disease states from cancer to various cardiovascular, neurologic, or inflammatory diseases, prompting an interest in whether modulation of drug-metabolizing enzyme activity could have a subsequent pharmacological impact or lessening of disease severity. Beyond direct regulation of endogenous pathways, drug-metabolizing enzymes have also been proactively targeted for their ability to activate prodrugs with subsequent pharmacological activity or enhance the efficacy of a coadministered drug by inhibiting the metabolism of that drug through a rationally designed drug-drug interaction (i.e., ritonavir and human immunodeficiency virus antiretroviral therapy). The focus of this minireview will be to highlight research aimed at characterizing cytochrome P450 and other drug-metabolizing enzymes as therapeutic targets. Examples of successfully marketed drugs as well as early research efforts will be discussed. Finally, emerging areas of research utilizing typical drug-metabolizing enzymes to impact clinical outcomes will be discussed. SIGNIFICANCE STATEMENT: Although generally thought of for their drug-metabolizing capabilities, enzymes such as the cytochromes P450, glutathione S-transferases, soluble epoxide hydrolases, and others play a significant role in regulating key endogenous pathways, making them potential drug targets. This minireview will cover various efforts over the years to modulate drug-metabolizing enzyme activity toward pharmacological outcomes.


Assuntos
Sistema Enzimático do Citocromo P-450 , Transdução de Sinais , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Xenobióticos/metabolismo
4.
J Pharmacol Exp Ther ; 383(1): 56-69, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35926871

RESUMO

Ion channels are targets of considerable therapeutic interest to address a wide variety of neurologic indications, including pain perception. Current pharmacological strategies have focused mostly on small molecule approaches that can be limited by selectivity requirements within members of a channel family or superfamily. Therapeutic antibodies have been proposed, designed, and characterized to alleviate this selectivity limitation; however, there are no Food and Drug Administration-approved therapeutic antibody-based drugs targeting ion channels on the market to date. Here, in an effort to identify novel classes of engineered ion channel modulators for potential neurologic therapeutic applications, we report the generation and characterization of six (EC50 < 25nM) Cys-loop receptor family monoclonal antibodies with modulatory function against rat and human glycine receptor alpha 1 (GlyRα1) and/or GlyRα3. These antibodies have activating (i.e., positive modulator) or inhibiting (i.e., negative modulator) profiles. Moreover, GlyRα3 selectivity was successfully achieved for two of the three positive modulators identified. When dosed intravenously, the antibodies achieved sufficient brain exposure to cover their calculated in vitro EC50 values. When compared head-to-head at identical exposures, the GlyRα3-selective antibody showed a more desirable safety profile over the nonselective antibody, thus demonstrating, for the first time, an advantage for GlyRα3-selectivity. Our data show that ligand-gated ion channels of the glycine receptor family within the central nervous system can be functionally modulated by engineered biologics in a dose-dependent manner and that, despite high protein homology between the alpha subunits, selectivity can be achieved within this receptor family, resulting in future therapeutic candidates with more desirable drug safety profiles. SIGNIFICANCE STATEMENT: This study presents immunization and multiplatform screening approaches to generate a diverse library of functional antibodies (agonist, potentiator, or inhibitory) raised against human glycine receptors (GlyRs). This study also demonstrates the feasibility of acquiring alpha subunit selectivity, a desirable therapeutic profile. When tested in vivo, these tool molecules demonstrated an increased safety profile in favor of GlyRα3-selectivity. These are the first reported functional GlyR antibodies that may open new avenues to treating central nervous system diseases with subunit selective biologics.


Assuntos
Anticorpos Monoclonais , Receptores de Glicina , Animais , Ratos , Humanos , Receptores de Glicina/metabolismo , Ligantes , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/metabolismo , Transmissão Sináptica
5.
Bioorg Med Chem Lett ; 73: 128892, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850422

RESUMO

NaV1.7 is an actively pursued, genetically validated, target for pain. Recently reported quinolinone sulfonamide inhibitors displayed promising selectivity profiles as well as efficacy in preclinical pain models; however, concerns about off-target liabilities associated with this series resulted in an effort to reduce the lipophilicity of these compounds. Successful prosecution of this strategy was challenging due to the opposing requirement for lipophilic inhibitors for NaV1.7 potency and in vivo clearance (CL). Deconstruction of the heterocyclic core of the quinolinone series and utilization of an intramolecular hydrogen bond to mimic the requisite pharmacophore enabled the introduction of polarity without adversely impacting CL. Ultimately, this strategy led to the identification of compound 29, which demonstrated favorable ADME and was efficacious in pre-clinical models of pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Quinolonas , Humanos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/tratamento farmacológico , Relação Estrutura-Atividade , Sulfanilamida , Sulfonamidas/química , Sulfonamidas/farmacologia , Ureia/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química
6.
Drug Metab Dispos ; 47(10): 1097-1099, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31399505

RESUMO

The discovery and development of novel pharmaceutical therapies is rapidly transitioning from a small molecule-dominated focus to a more balanced portfolio consisting of small molecules, monoclonal antibodies, engineered proteins (modified endogenous proteins, bispecific antibodies, and fusion proteins), oligonucleotides, and gene-based therapies. This commentary, and the special issue as a whole, aims to highlight these emerging modalities and the efforts underway to better understand their unique pharmacokinetic and absorption, disposition, metabolism, and excretion (ADME) properties. The articles highlighted herein can be broadly grouped into those focusing on the ADME properties of novel therapeutics, those exploring targeted-delivery strategies, and finally, those discussing oligonucleotide therapies. It is also evident that whereas the field in general continues to progress toward new and more complex molecules, a significant amount of effort is still being placed on antibody-drug conjugates. As therapeutic molecules become increasingly complex, a parallel demand for advancements in experimental and analytical tools will become increasingly evident, both to increase the speed and efficiency of identifying safe and efficacious molecules and simultaneously decreasing our dependence on in vivo studies in preclinical species. The research and commentary included in this special issue will provide researchers, clinicians, and the patients we serve more options in the ongoing fight against grievous illnesses and unmet medical needs. SIGNIFICANCE STATEMENT: Recent trends in drug discovery and development suggest a shift away from a small molecule-dominated approach to a more balanced portfolio that includes small molecules, monoclonal antibodies, engineered proteins, and gene therapies. The research presented in this special issue of Drug Metabolism and Disposition will serve to highlight advancements in the understanding of the mechanisms that govern the pharmacokinetic and drug metabolism properties of the novel therapeutic modalities.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Animais , Modelos Animais de Doenças , Humanos , Taxa de Depuração Metabólica , Oligonucleotídeos/farmacocinética , Oligonucleotídeos/uso terapêutico , Distribuição Tecidual
7.
Drug Metab Dispos ; 47(10): 1111-1121, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31387871

RESUMO

The identification of nonopioid alternatives to treat chronic pain has received a great deal of interest in recent years. Recently, the engineering of a series of Nav1.7 inhibitory peptide-antibody conjugates has been reported, and herein, the preclinical efforts to identify novel approaches to characterize the pharmacokinetic properties of the peptide conjugates are described. A cryopreserved plated mouse hepatocyte assay was designed to measure the depletion of the peptide-antibody conjugates from the media, with a correlation being observed between percentage remaining in the media and in vivo clearance (Pearson r = -0.5525). Physicochemical (charge and hydrophobicity), receptor-binding [neonatal Fc receptor (FcRn)], and in vivo pharmacokinetic data were generated and compared with the results from our in vitro hepatocyte assay, which was hypothesized to encompass all of the aforementioned properties. Correlations were observed among hydrophobicity; FcRn binding; depletion rates from the hepatocyte assay; and ultimately, in vivo clearance. Subsequent studies identified potential roles for the low-density lipoprotein and mannose/galactose receptors in the association of the Nav1.7 peptide conjugates with mouse hepatocytes, although in vivo studies suggested that FcRn was still the primary receptor involved in determining the pharmacokinetics of the peptide conjugates. Ultimately, the use of the cryopreserved hepatocyte assay along with FcRn binding and hydrophobic interaction chromatography provided an efficient and integrated approach to rapidly triage molecules for advancement while reducing the number of in vivo pharmacokinetic studies. SIGNIFICANCE STATEMENT: Although multiple in vitro and in silico tools are available in small-molecule drug discovery, pharmacokinetic characterization of protein therapeutics is still highly dependent upon the use of in vivo studies in preclinical species. The current work demonstrates the combined use of cryopreserved hepatocytes, hydrophobic interaction chromatography, and neonatal Fc receptor binding to characterize a series of Nav1.7 peptide-antibody conjugates prior to conducting in vivo studies, thus providing a means to rapidly evaluate novel protein therapeutic platforms while concomitantly reducing the number of in vivo studies conducted in preclinical species.


Assuntos
Dor Crônica/tratamento farmacológico , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoconjugados/farmacocinética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Receptores Fc/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Administração Intravenosa , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Criopreservação , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos , Antígenos de Histocompatibilidade Classe I/genética , Imunoconjugados/administração & dosagem , Macaca fascicularis , Masculino , Taxa de Depuração Metabólica , Camundongos , Camundongos Knockout , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Receptores Fc/genética , Distribuição Tecidual , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem
8.
ACS Chem Biol ; 14(4): 806-818, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30875193

RESUMO

Drug discovery research on new pain targets with human genetic validation, including the voltage-gated sodium channel NaV1.7, is being pursued to address the unmet medical need with respect to chronic pain and the rising opioid epidemic. As part of early research efforts on this front, we have previously developed NaV1.7 inhibitory peptide-antibody conjugates with tarantula venom-derived GpTx-1 toxin peptides with an extended half-life (80 h) in rodents but only moderate in vitro activity (hNaV1.7 IC50 = 250 nM) and without in vivo activity. We identified the more potent peptide JzTx-V from our natural peptide collection and improved its selectivity against other sodium channel isoforms through positional analogueing. Here we report utilization of the JzTx-V scaffold in a peptide-antibody conjugate and architectural variations in the linker, peptide loading, and antibody attachment site. We found conjugates with 100-fold improved in vitro potency relative to those of complementary GpTx-1 analogues, but pharmacokinetic and bioimaging analyses of these JzTx-V conjugates revealed a shorter than expected plasma half-life in vivo with accumulation in the liver. In an attempt to increase circulatory serum levels, we sought the reduction of the net +6 charge of the JzTx-V scaffold while retaining a desirable NaV in vitro activity profile. The conjugate of a JzTx-V peptide analogue with a +2 formal charge maintained NaV1.7 potency with 18-fold improved plasma exposure in rodents. Balancing the loss of peptide and conjugate potency associated with the reduction of net charge necessary for improved target exposure resulted in a compound with moderate activity in a NaV1.7-dependent pharmacodynamic model but requires further optimization to identify a conjugate that can fully engage NaV1.7 in vivo.


Assuntos
Imunoconjugados , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Peptídeos/química , Venenos de Aranha/química , Bloqueadores do Canal de Sódio Disparado por Voltagem , Animais , Anticorpos/química , Descoberta de Drogas , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Masculino , Camundongos , Terapia de Alvo Molecular , Canal de Sódio Disparado por Voltagem NAV1.7/imunologia , Peptídeos/farmacocinética , Venenos de Aranha/farmacocinética , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética
9.
Bioorg Med Chem Lett ; 28(11): 2103-2108, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29709252

RESUMO

Recently, the identification of several classes of aryl sulfonamides and acyl sulfonamides that potently inhibit NaV1.7 and demonstrate high levels of selectivity over other NaV isoforms have been reported. The fully ionizable nature of these inhibitors has been shown to be an important part of the pharmacophore for the observed potency and isoform selectivity. The requirement of this functionality, however, has presented challenges associated with optimization toward inhibitors with drug-like properties and minimal off-target activity. In an effort to obviate these challenges, we set out to develop an orally bioavailable, selective NaV1.7 inhibitor, lacking these acidic functional groups. Herein, we report the discovery of a novel series of inhibitors wherein a triazolesulfone has been designed to serve as a bioisostere for the acyl sulfonamide. This work culminated in the delivery of a potent series of inhibitors which demonstrated good levels of selectivity over NaV1.5 and favorable pharmacokinetics in rodents.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Sulfonamidas/farmacologia , Animais , Relação Dose-Resposta a Droga , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Sulfonamidas/química
10.
Drug Metab Dispos ; 46(4): 367-379, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29343609

RESUMO

Metabolism of 25-hydroxyvitamin D3 (25OHD3) plays a central role in regulating the biologic effects of vitamin D in the body. Although cytochrome P450-dependent hydroxylation of 25OHD3 has been extensively investigated, limited information is available on the conjugation of 25OHD3 In this study, we report that 25OHD3 is selectively conjugated to 25OHD3-3-O-sulfate by human sulfotransferase 2A1 (SULT2A1) and that the liver is a primary site of metabolite formation. At a low (50 nM) concentration of 25OHD3, 25OHD3-3-O-sulfate was the most abundant metabolite, with an intrinsic clearance approximately 8-fold higher than the next most efficient metabolic route. In addition, 25OHD3 sulfonation was not inducible by the potent human pregnane X receptor agonist, rifampicin. The 25OHD3 sulfonation rates in a bank of 258 different human liver cytosols were highly variable but correlated with the rates of dehydroepiandrosterone sulfonation. Further analysis revealed a significant association between a common single nucleotide variant within intron 1 of SULT2A1 (rs296361; minor allele frequency = 15% in whites) and liver cytosolic SULT2A1 content as well as 25OHD3-3-O-sulfate formation rate, suggesting that variation in the SULT2A1 gene contributes importantly to interindividual differences in vitamin D homeostasis. Finally, 25OHD3-3-O-sulfate exhibited high affinity for the vitamin D binding protein and was detectable in human plasma and bile but not in urine samples. Thus, circulating concentrations of 25OHD3-3-O-sulfate appear to be protected from rapid renal elimination, raising the possibility that the sulfate metabolite may serve as a reservoir of 25OHD3 in vivo, and contribute indirectly to the biologic effects of vitamin D.


Assuntos
Calcifediol/sangue , Calcifediol/metabolismo , Sulfatos/metabolismo , Sulfotransferases/metabolismo , Vitamina D/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Humanos , Hidroxilação/fisiologia , Lactente , Cinética , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Receptor de Pregnano X , Receptores de Esteroides/metabolismo , Adulto Jovem
11.
Bioorg Med Chem Lett ; 27(16): 3817-3824, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28684121

RESUMO

The NaV1.7 ion channel has garnered considerable attention as a target for the treatment of pain. Herein we detail the discovery and structure-activity relationships of a novel series of biaryl amides. Optimization led to the identification of several state-dependent, potent and metabolically stable inhibitors which demonstrated promising levels of selectivity over NaV1.5 and good rat pharmacokinetics. Compound 18, which demonstrated preferential inhibition of a slow inactivated state of NaV1.7, was advanced into a rat formalin study where upon reaching unbound drug levels several fold over the rat NaV1.7 IC50 it failed to demonstrate a robust reduction in nociceptive behavior.


Assuntos
Amidas/farmacologia , Descoberta de Drogas , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Amidas/síntese química , Amidas/química , Animais , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
13.
J Med Chem ; 60(14): 5990-6017, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28324649

RESUMO

Because of its strong genetic validation, NaV1.7 has attracted significant interest as a target for the treatment of pain. We have previously reported on a number of structurally distinct bicyclic heteroarylsulfonamides as NaV1.7 inhibitors that demonstrate high levels of selectivity over other NaV isoforms. Herein, we report the discovery and optimization of a series of atropisomeric quinolinone sulfonamide inhibitors [ Bicyclic sulfonamide compounds as sodium channel inhibitors and their preparation . WO 2014201206, 2014 ] of NaV1.7, which demonstrate nanomolar inhibition of NaV1.7 and exhibit high levels of selectivity over other sodium channel isoforms. After optimization of metabolic and pharmacokinetic properties, including PXR activation, CYP2C9 inhibition, and CYP3A4 TDI, several compounds were advanced into in vivo target engagement and efficacy models. When tested in mice, compound 39 (AM-0466) demonstrated robust pharmacodynamic activity in a NaV1.7-dependent model of histamine-induced pruritus (itch) and additionally in a capsaicin-induced nociception model of pain without any confounding effect in open-field activity.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Quinolonas/química , Sulfonamidas/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Analgésicos/química , Analgésicos/farmacocinética , Analgésicos/farmacologia , Animais , Capsaicina , Linhagem Celular , Cães , Histamina , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Dor/induzido quimicamente , Dor/prevenção & controle , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Prurido/induzido quimicamente , Prurido/prevenção & controle , Quinolonas/administração & dosagem , Quinolonas/síntese química , Quinolonas/farmacocinética , Quinolonas/farmacologia , Ratos , Relação Estrutura-Atividade , Sulfonamidas/administração & dosagem , Sulfonamidas/síntese química , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
14.
J Med Chem ; 60(14): 5969-5989, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28287723

RESUMO

Several reports have recently emerged regarding the identification of heteroarylsulfonamides as NaV1.7 inhibitors that demonstrate high levels of selectivity over other NaV isoforms. The optimization of a series of internal NaV1.7 leads that address a number of metabolic liabilities including bioactivation, PXR activation, as well as CYP3A4 induction and inhibition led to the identification of potent and selective inhibitors that demonstrated favorable pharmacokinetic profiles and were devoid of the aforementioned liabilities. The key to achieving this within a series prone to transporter-mediated clearance was the identification of a small range of optimal cLogD values and the discovery of subtle PXR SAR that was not lipophilicity dependent. This enabled the identification of compound 20, which was advanced into a target engagement pharmacodynamic model where it exhibited robust reversal of histamine-induced scratching bouts in mice.


Assuntos
Isoquinolinas/química , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Sulfonamidas/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Animais , Linhagem Celular , Citocromo P-450 CYP3A/biossíntese , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacologia , Cães , Indução Enzimática , Histamina , Humanos , Isoquinolinas/administração & dosagem , Isoquinolinas/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Receptor de Pregnano X , Prurido/induzido quimicamente , Prurido/prevenção & controle , Ratos , Receptores de Esteroides/agonistas , Relação Estrutura-Atividade , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
15.
ACS Med Chem Lett ; 7(12): 1062-1067, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27994738

RESUMO

Human genetic evidence has identified the voltage-gated sodium channel NaV1.7 as an attractive target for the treatment of pain. We initially identified naphthalene sulfonamide 3 as a potent and selective inhibitor of NaV1.7. Optimization to reduce biliary clearance by balancing hydrophilicity and hydrophobicity (Log D) while maintaining NaV1.7 potency led to the identification of quinazoline 16 (AM-2099). Compound 16 demonstrated a favorable pharmacokinetic profile in rat and dog and demonstrated dose-dependent reduction of histamine-induced scratching bouts in a mouse behavioral model following oral dosing.

16.
J Med Chem ; 59(17): 7818-39, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27441383

RESUMO

The majority of potent and selective hNaV1.7 inhibitors possess common pharmacophoric features that include a heteroaryl sulfonamide headgroup and a lipophilic aromatic tail group. Recently, reports of similar aromatic tail groups in combination with an acyl sulfonamide headgroup have emerged, with the acyl sulfonamide bestowing levels of selectivity over hNaV1.5 comparable to the heteroaryl sulfonamide. Beginning with commercially available carboxylic acids that met selected pharmacophoric requirements in the lipophilic tail, a parallel synthetic approach was applied to rapidly generate the derived acyl sulfonamides. A biaryl acyl sulfonamide hit from this library was elaborated, optimizing for potency and selectivity with attention to physicochemical properties. The resulting novel leads are potent, ligand and lipophilic efficient, and selective over hNaV1.5. Representative lead 36 demonstrates selectivity over other human NaV isoforms and good pharmacokinetics in rodents. The biaryl acyl sulfonamides reported herein may also offer ADME advantages over known heteroaryl sulfonamide inhibitors.


Assuntos
Benzamidas/química , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Sulfonamidas/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Animais , Benzamidas/síntese química , Benzamidas/farmacocinética , Benzamidas/farmacologia , Linhagem Celular , Feminino , Histamina , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Prurido/induzido quimicamente , Prurido/tratamento farmacológico , Ensaio Radioligante , Ratos , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/síntese química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
17.
J Enzyme Inhib Med Chem ; 31(sup2): 148-161, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27424662

RESUMO

The CYP26s are responsible for metabolizing retinoic acid and play an important role in maintaining homeostatic levels of retinoic acid. Given the ability of CYP2C8 to metabolize retinoic acid, we evaluated the potential for CYP2C8 inhibitors to also inhibit CYP26. In vitro assays were used to evaluate the inhibition potencies of CYP2C8 inhibitors against CYP26A1 and CYP26B1. Using tazarotenic acid as a substrate for CYP26, IC50 values for 17 inhibitors of CYP2C8 were determined for CYP26A1 and CYP26B1, ranging from ∼20 nM to 100 µM, with a positive correlation observed between IC50s for CYP2C8 and CYP26A1. An evaluation of IC50's versus in vivo Cmax values suggests that inhibitors such as clotrimazole or fluconazole may interact with CYP26 at clinically relevant concentrations and may alter levels of retinoic acid. These findings provide insight into drug interactions resulting in elevated retinoic acid concentrations and expand upon the pharmacophore of CYP26 inhibition.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Retinoico 4 Hidroxilase/antagonistas & inibidores , Sítios de Ligação , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/química , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Ácido Retinoico 4 Hidroxilase/metabolismo , Relação Estrutura-Atividade , Tretinoína/metabolismo
18.
J Med Chem ; 59(15): 7252-67, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27411843

RESUMO

Optimization of the potency and pharmacokinetic profile of 2,3,4-trisubstituted quinoline, 4, led to the discovery of two potent, selective, and orally bioavailable PI3Kδ inhibitors, 6a (AM-0687) and 7 (AM-1430). On the basis of their improved profile, these analogs were selected for in vivo pharmacodynamic (PD) and efficacy experiments in animal models of inflammation. The in vivo PD studies, which were carried out in a mouse pAKT inhibition animal model, confirmed the observed potency of 6a and 7 in biochemical and cellular assays. Efficacy experiments in a keyhole limpet hemocyanin model in rats demonstrated that administration of either 6a or 7 resulted in a strong dose-dependent reduction of IgG and IgM specific antibodies. The excellent in vitro and in vivo profiles of these analogs make them suitable for further development.


Assuntos
Descoberta de Drogas , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Quinolinas/farmacologia , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Relação Dose-Resposta a Droga , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridinas/síntese química , Piridinas/química , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
19.
Drug Metab Dispos ; 44(8): 1229-45, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27298339

RESUMO

The drug-metabolizing enzymes that contribute to the metabolism or bioactivation of a drug play a crucial role in defining the absorption, distribution, metabolism, and excretion properties of that drug. Although the overall effect of the cytochrome P450 (P450) family of drug-metabolizing enzymes in this capacity cannot be understated, advancements in the field of non-P450-mediated metabolism have garnered increasing attention in recent years. This is perhaps a direct result of our ability to systematically avoid P450 liabilities by introducing chemical moieties that are not susceptible to P450 metabolism but, as a result, may introduce key pharmacophores for other drug-metabolizing enzymes. Furthermore, the effects of both P450 and non-P450 metabolism at a drug's site of therapeutic action have also been subject to increased scrutiny. To this end, this Special Section on Emerging Novel Enzyme Pathways in Drug Metabolism will highlight a number of advancements that have recently been reported. The included articles support the important role of non-P450 enzymes in the clearance pathways of U.S. Food and Drug Administration-approved drugs over the past 10 years. Specific examples will detail recent reports of aldehyde oxidase, flavin-containing monooxygenase, and other non-P450 pathways that contribute to the metabolic, pharmacokinetic, or pharmacodynamic properties of xenobiotic compounds. Collectively, this series of articles provides additional support for the role of non-P450-mediated metabolic pathways that contribute to the absorption, distribution, metabolism, and excretion properties of current xenobiotics.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Xenobióticos/farmacocinética , Ativação Metabólica , Animais , Glucuronosiltransferase/metabolismo , Humanos , Inativação Metabólica , Oxirredução , Oxirredutases/metabolismo , Especificidade por Substrato , Sulfotransferases/metabolismo , Xenobióticos/efeitos adversos
20.
J Pharmacol Exp Ther ; 357(2): 281-92, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26937021

RESUMO

Cytochrome P450 (CYP) 26A1 and 26B1 are heme-containing enzymes responsible for metabolizing all-trans retinoic acid (at-RA). No crystal structures have been solved, and therefore homology models that provide structural information are extremely valuable for the development of inhibitors of cytochrome P450 family 26 (CYP26). The objectives of this study were to use homology models of CYP26A1 and CYP26B1 to characterize substrate binding characteristics, to compare structural aspects of their active sites, and to support the role of CYP26 in the metabolism of xenobiotics. Each model was verified by dockingat-RA in the active site and comparing the results to known metabolic profiles ofat-RA. The models were then used to predict the metabolic sites of tazarotenic acid with results verified by in vitro metabolite identification experiments. The CYP26A1 and CYP26B1 homology models predicted that the benzothiopyranyl moiety of tazarotenic acid would be oriented toward the heme of each enzyme and suggested that tazarotenic acid would be a substrate of CYP26A1 and CYP26B1. Metabolite identification experiments indicated that CYP26A1 and CYP26B1 oxidatively metabolized tazarotenic acid on the predicted moiety, with in vitro rates of metabolite formation by CYP26A1 and CYP26B1 being the highest across a panel of enzymes. Molecular analysis of the active sites estimated the active-site volumes of CYP26A1 and CYP26B1 to be 918 Å(3)and 977 Å(3), respectively. Overall, the homology models presented herein describe the enzyme characteristics leading to the metabolism of tazarotenic acid by CYP26A1 and CYP26B1 and support a potential role for the CYP26 enzymes in the metabolism of xenobiotics.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Nicotínicos/metabolismo , Xenobióticos/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/química , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Preparações Farmacêuticas/metabolismo , Receptores do Ácido Retinoico/agonistas , Ácido Retinoico 4 Hidroxilase , Especificidade por Substrato , Tretinoína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...