Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurospine ; 17(1): 77-87, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32252157

RESUMO

OBJECTIVE: Spinal fusion surgery is a common treatment modality for various pathologic conditions of the spine. The bone morphogenetic protein 2 (BMP2) analogue L51P acts as a general inhibitor of BMP antagonists, whereas it shows a weak affinity for BMP type I receptor. It is suggested that L51P applied in bone disorders might prevent side effects of highly concentrated BMP dosage applications in the order of milligrams. The objective of this study was to investigate the effects of L51P and BMP2 on intervertebral disc cells (IVDCs), i.e. on nucleus pulposus cells, on annulus fibrosus cells (AFCs), and on cartilaginous endplate cells (CEPCs), respectively, in 3-dimensional (3D) culture. METHODS: Low-passage primary IVDCs were cultured in 3D alginate bead culture and exposed to 100-ng/mL BMP2 and/or L51P for 21 days. Here, we analyzed glycosaminoglycan (GAG) and DNA content and further performed gene expression analysis for major matrix genes. RESULTS: AFCs and cartilaginous CEPCs stimulated with each 100-ng/mL L51P and BMP2, showed a significant upregulation in GAG (AFCs: p = 0.00347 and CEPCs: p = 0.0115) and DNA production (AFCs: p = 0.0182 and CEPCs: p = 0.0179) compared to control. CONCLUSION: These results allow first insights into the behavior of IVDCs upon L51P stimulation.

2.
Tissue Eng Part C Methods ; 25(10): 571-580, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31154900

RESUMO

Low back pain related to intervertebral disk (IVD) degeneration has a major socioeconomic impact on our aging society. Therefore, stem cell therapy to activate self-repair of the IVD remains an exciting treatment strategy. In this respect, tissue-specific progenitors may play a crucial role in IVD regeneration, as these cells are perfectly adapted to this niche. Such a rare progenitor cell population residing in the nucleus pulposus (NP) (NP progenitor cells [NPPCs]) was found positive for the angiopoietin-1 receptor (Tie2+), and was demonstrated to possess self-renewal capacity and in vitro multipotency. Here, we compared three sorting protocols; that is, fluorescence-activated cell sorting (FACS), magnetic-activated cell sorting (MACS), and a mesh-based label-free cell sorting system (pluriSelect), with respect to cell yield, potential to form colonies (colony-forming units), and in vitro functional differentiation assays for tripotency. The aim of this study was to demonstrate the efficiency of three widespread cell sorting methods for picking rare cells (<5%) and how these isolated cells then behave in downstream functional differentiation in adipogenesis, osteogenesis, and chondrogenesis. The cell yields among the isolation methods differed widely, with FACS presenting the highest yield (5.0% ± 4.0%), followed by MACS (1.6% ± 2.9%) and pluriSelect (1.1% ± 1.0%). The number of colonies formed was not significantly different between Tie2+ and Tie2- NPPCs. Only FACS was able to separate into two functionally different populations that showed trilineage multipotency, while MACS and pluriSelect failed to maintain a clear separation between Tie2+ and Tie2- populations in differentiation assays. To conclude, the isolation of NPPCs was possible with all three sorting methods, while FACS was the preferred technique for separation of functional Tie2+ cells. Impact Statement Tissue-specific progenitor cells such as nucleus pulposus progenitor cells of the IVD could become an ultimate cell source for tissue engineering strategies as these cells are presumably best adapted to the tissue's microenvironment. Fluorescence-activated cell sorting seemed to outcompete magnetic-activated cell sorting and pluriSelect concerning selecting a rare cell population from IVD tissue as could be demonstrated by improved cell yield and functional differentiation assays.


Assuntos
Citometria de Fluxo/métodos , Disco Intervertebral/citologia , Magnetismo , Células-Tronco/citologia , Adipogenia , Animais , Bovinos , Células Cultivadas , Condrogênese , Ensaio de Unidades Formadoras de Colônias , Osteogênese , Receptor TIE-2/metabolismo , Células-Tronco/metabolismo
3.
J Funct Biomater ; 9(3)2018 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-29937524

RESUMO

(1) Background: Intervertebral disc (IVD) repair represents a major challenge. Using functionalised biomaterials such as silk combined with enforced hydrogels might be a promising approach for disc repair. We aimed to test an IVD repair approach by combining a genipin-enhanced fibrin hydrogel with an engineered silk scaffold under complex load, after inducing an injury in a bovine whole organ IVD culture; (2) Methods: Bovine coccygeal IVDs were isolated from ~1-year-old animals within four hours post-mortem. Then, an injury in the annulus fibrosus was induced by a 2 mm biopsy punch. The repair approach consisted of genipin-enhanced fibrin hydrogel that was used to fill up the cavity. To seal the injury, a Good Manufacturing Practise (GMP)-compliant engineered silk fleece-membrane composite was applied and secured by the cross-linked hydrogel. Then, IVDs were exposed to one of three loading conditions: no load, static load and complex load in a two-degree-of-freedom bioreactor for 14 days. Followed by assessing DNA and matrix content, qPCR and histology, the injured discs were compared to an uninjured control IVD that underwent the same loading profiles. In addition, the genipin-enhanced fibrin hydrogel was further investigated with respect to cytotoxicity on human stem cells, annulus fibrosus, and nucleus pulposus cells; (3) Results: The repair was successful as no herniation could be detected for any of the three loading conditions. Disc height was not recovered by the repair DNA and matrix contents were comparable to a healthy, untreated control disc. Genipin resulted being cytotoxic in the in vitro test but did not show adverse effects when used for the organ culture model; (4) Conclusions: The current study indicated that the combination of the two biomaterials, i.e., genipin-enhanced fibrin hydrogel and an engineered silk scaffold, was a promising approach for IVD repair. Furthermore, genipin-enhanced fibrin hydrogel was not suitable for cell cultures; however, it was highly applicable as a filler material.

4.
Eur Spine J ; 27(8): 1785-1797, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29789921

RESUMO

PURPOSE: Comparison of two annulus fibrosus injury models that mimic intervertebral disc (IVD) herniation, enabling the study of IVD behaviour under three loading regimes in a bovine organ culture model. METHODS: An injury was induced by custom-designed cross-incision tool or a 2-mm biopsy punch in IVDs. Discs were cultured for 14 days under (1) complex (compression and torsion), (2) static, and (3) no load. Disc height, mitochondrial activity, DNA and glycosaminoglycan (GAG) contents, and disc stiffness under complex load were determined. Further, gene expression and histology analysis were performed. RESULTS: While both injury models did not change the compressional stiffness of IVDs, cross-incision decreased disc height under complex load. Moreover, under complex load, the biopsy punch injury induced down-regulation of several anabolic, catabol ic, and inflammatory genes, whereas cross-incision did not significantly differ from control discs. However, DNA and GAG contents were in the range of the healthy control discs for both injury models but did show lower contents under no load and static load. Injury side and contralateral side of the IVD showed a similar behaviour on the biochemical assays tested. CONCLUSION: Compressional stiffness, GAG and DNA contents, did not differ between injury models under complex load. This behaviour was partially attributed to the positive influence of complex loading on matrix regeneration and cell viability. However, disc height was reduced for the cross-incision. Relative gene expression changes of the inflammatory and anabolic genes for the biopsy punch approach might indicate that induced damage was too intense to trigger any inflammatory or repair response. These slides can be retrieved under Electronic Supplementary Material.


Assuntos
Deslocamento do Disco Intervertebral/patologia , Disco Intervertebral/patologia , Técnicas de Cultura de Órgãos/métodos , Animais , Bovinos , Sobrevivência Celular/fisiologia , Citocinas/metabolismo , DNA/metabolismo , Modelos Animais de Doenças , Expressão Gênica/fisiologia , Glicosaminoglicanos/metabolismo , Disco Intervertebral/metabolismo , Deslocamento do Disco Intervertebral/metabolismo , Suporte de Carga/fisiologia
5.
Int J Mol Sci ; 19(4)2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652862

RESUMO

Spinal fusion is a common surgical procedure to address a range of spinal pathologies, like damaged or degenerated discs. After the removal of the intervertebral disc (IVD), a structural spacer is positioned followed by internal fixation, and fusion of the degenerated segment by natural bone growth. Due to their osteoinductive properties, bone morphogenetic proteins (BMP) are applied to promote spinal fusion. Although spinal fusion is successful in most patients, the rates of non-unions after lumbar spine fusion range from 5% to 35%. Clinical observations and recent studies indicate, that the incomplete removal of disc tissue might lead to failure of spinal fusion. Yet, it is still unknown if a secretion of BMP antagonists in intervertebral disc (IVD) cells could be the reason of inhibition in bone formation. In this study, we co-cultured human primary osteoblasts (OB) and IVD cells i.e., nucleus pulposus (NPC), annulus fibrosus (AFC) and cartilaginous endplate cells (CEPC), to test the possible inhibitory effect from IVD cells on OB. Although we could see a trend in lower matrix mineralization in OB co-cultured with IVD cells, results of alkaline phosphatase (ALP) activity and gene expression of major bone genes were inconclusive. However, in NPC, AFC and CEPC beads, an up-regulation of several BMP antagonist genes could be detected. Despite being able to show several indicators for an inhibition of osteoinductive effects due to IVD cells, the reasons for pseudarthrosis after spinal fusion remain unclear.


Assuntos
Fosfatase Alcalina/metabolismo , Técnicas de Cocultura/métodos , Disco Intervertebral/citologia , Osteoblastos/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anel Fibroso/citologia , Calcificação Fisiológica , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Masculino , Metaloproteinases da Matriz Secretadas/metabolismo , Núcleo Pulposo/citologia , Osteoblastos/metabolismo
6.
JOR Spine ; 1(2): e1018, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31463445

RESUMO

BACKGROUND: Recently, Tie2/TEK receptor tyrosine kinase (Tie2 or syn. angiopoietin-1 receptor) positive nucleus pulposus progenitor cells were detected in human, cattle, and mouse. These cells show remarkable multilineage differentiation capacity and direct correlation with intervertebral disc (IVD) degeneration and are therefore an interesting target for regenerative strategies. Nevertheless, there remains controversy over the presence and function of these Tie2+ nucleus pulposus cells (NPCs), in part due to the difficulty of identification and isolation. PURPOSE: Here, we present a comprehensive protocol for sorting of Tie2+ NPCs from human, canine, bovine, and murine IVD tissue. We describe enhanced conditions for expansion and an optimized fluorescence-activated cell sorting-based methodology to sort and analyze Tie2+ NPCs. METHODS: We present flow cytometry protocols to isolate the Tie2+ cell population for the aforementioned species. Moreover, we describe crucial pitfalls to prevent loss of Tie2+ NPCs from the IVD cell population during the isolation process. A cross-species phylogenetic analysis of Tie2 across species is presented. RESULTS: Our protocols are efficient towards labeling and isolation of Tie2+ NPCs. The total flow cytometry procedure requires approximately 9 hours, cell isolation 4 to 16 hours, cell expansion can take up to multiple weeks, dependent on the application, age, disease state, and species. Phylogenetic analysis of the TEK gene revealed a strong homology among species. CONCLUSIONS: Current identification of Tie2+ cells could be confirmed in bovine, canine, mouse, and human specimens. The presented flow cytometry protocol can successfully sort these multipotent cells. The biological function of isolated cells based on Tie2+ expression needs to be confirmed by functional assays such as in vitro differentiation. in vitro culture conditions to maintain and their possible proliferation of the Tie2+ fraction is the subject of future research.

7.
J Orthop Res ; 36(5): 1324-1333, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29058815

RESUMO

Intervertebral disc (IVD) repair is a high-priority topic in our active and increasingly ageing society. Since a high number of people are affected by low back pain treatment options that are able to restore the biological function of the IVD are highly warranted. Here, we investigated whether the feasibility of genetically engineered (GE)-silk from Bombyx mori containing specific growth factors to precondition human bone-marrow derived mesenchymal stem cells (hMSC) or to activate differentiated human annulus fibrosus cells (hAFC) prior transplantation or for direct repair on the IVD. Here, we tested the hypothesis that GE-silk fleece can thrive human hMSC towards an IVD-like phenotype. We aimed to demonstrate a possible translational application of good manufacturing practice (GMP)-compliant GE-silk scaffolds in IVD repair and regeneration. GE-silk with growth and differentiation factor 6 (GDF-6-silk) or transforming growth factor ß3 (TGF-ß3, TGF-ß3-silk) and untreated silk (cSilk) were investigated by DNA content, cell activity assay and glycosaminoglycan (GAG) content and their differentiation potential by qPCR analysis. We found that all silk types demonstrated a very high biocompatibility for both cell types, that is, hMSC and hAFC, as revealed by cell activity, and DNA proliferation assay. Further, analyzing qPCR of marker genes revealed a trend to differentiation toward an NP-like phenotype looking at the Aggrecan/Collagen 2 ratio which was around 10:1. Our results support the conclusion that our GE-silk scaffold treatment approach can thrive hMSC towards a more IVD-like phenotype or can maintain the phenotype of native hAFC. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1324-1333, 2018.


Assuntos
Anel Fibroso/citologia , Engenharia Genética/métodos , Fator 6 de Diferenciação de Crescimento/farmacologia , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais , Fator de Crescimento Transformador beta3/farmacologia , Diferenciação Celular/efeitos dos fármacos , DNA/análise , Humanos , Mitocôndrias/fisiologia
8.
J Orthop Res ; 35(12): 2733-2739, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28485509

RESUMO

Due to the poor self-healing capacities of the anterior cruciate ligament, previous primary repair attempts have failed. To enhance biologic healing, platelet rich plasma and collagen scaffold have shown promise in animal models. Platelet rich plasma (PRP) is already used in several clinical applications although outcomes are quite debated. The purpose of this study was to examine the effects of different PRP formulations during 21 days: With leucocytes and pure PRP on human anterior cruciate ligament-derived ligamentocytes grown on collagen patches in 3D cell cultures in vitro. Three experimental groups were formed: 2.5% leucocyte rich PRP, 2.5% pure PRP, 20% leucocyte rich PRP, a negative control, and a positive control. Cell proliferation, cell phenotype on mRNA transcript level, and extracellular matrix production (total collagen and glycosaminoglycan content) were evaluated. DNA content and metabolic cell activity increased significantly in all groups on day 21 compared to day 7, except in the negative control. No changes in extracellular matrix production were detected. Different catabolic genes were induced depending on the concentration of leucocyte rich PRP. PRP with and without leucocytes treated anterior cruciate ligamentocytes significantly increased cell proliferation but not extracellular matrix production. However, the specific activation of different catabolic genes was dependent on the relative content of leucocytes. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2733-2739, 2017.


Assuntos
Lesões do Ligamento Cruzado Anterior/terapia , Plasma Rico em Plaquetas , Adulto , Proliferação de Células , Células Cultivadas , Matriz Extracelular/metabolismo , Humanos , Transfusão de Leucócitos , Masculino , Adulto Jovem
9.
Tissue Eng Part C Methods ; 23(1): 30-37, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27968705

RESUMO

Low back pain (LBP) is an increasing global health problem associated with intervertebral disc (IVD) trauma and degeneration. Current treatment options include surgical interventions with partial unsatisfactory outcomes reported such as failure to relieve LBP, nonunions, nerve injuries, or adjacent segment disease. Cell-based therapy and tissue engineered IVD constructs supplemented with transfected disc cells that incorporate factors enhancing matrix synthesis represent an appealing approach to regenerate the IVD. Gene delivery approaches using transient nonviral gene therapy by electroporation are of a high clinical translational value since the incorporated DNA is lost after few cell generations, leaving the host's genome unmodified. Human primary cells isolated from clinically relevant samples were generally found very hard to transfect compared to cell lines. In this study, we present a range of parameters (voltage pulse, number, and duration) from the Neon® Transfection System for efficient transfection of human and bovine IVD cells. To demonstrate efficiency, these primary cells were exemplarily transfected with the commercially available plasmid pCMV6-AC-GFP tagged with copepod turbo green fluorescent protein. Flow cytometry was subsequently applied to quantify transfection efficiency. Our results showed that two pulses of 1400 V for 20 ms revealed good and reproducible results for both human and bovine IVD cells with efficiencies ≥47%. The presented parameters allow for successful human and bovine IVD cell transfection and provide an opportunity for subsequent regenerative medicine application.


Assuntos
Eletroporação/métodos , Degeneração do Disco Intervertebral/terapia , Disco Intervertebral/citologia , Medicina Regenerativa , Engenharia Tecidual/métodos , Adulto , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Feminino , Humanos , Disco Intervertebral/fisiologia , Masculino , Pessoa de Meia-Idade , Plasmídeos , Adulto Jovem
10.
Biomaterials ; 88: 110-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26976264

RESUMO

Nucleus pulposus replacements have been subjected to highly controversial discussions over the last 40 years. Their use has not yet resulted in a positive outcome to treat herniated disc or degenerated disc disease. The main reason is that not a single implant or tissue replacement was able to withstand the loads within an intervertebral disc. Here, we report on the development of a photo-polymerizable poly(ethylene glycol)dimethacrylate nano-fibrillated cellulose composite hydrogel which was tuned according to native tissue properties. Using a customized minimally-invasive medical device to inject and photopolymerize the hydrogel insitu, samples were implanted through an incision of 1 mm into an intervertebral disc of a bovine organ model to evaluate their long-term performance. When implanted into the bovine disc model, the composite hydrogel implant was able to significantly re-establish disc height after surgery (p < 0.0025). The height was maintained after 0.5 million loading cycles (p < 0.025). The mechanical resistance of the novel composite hydrogel material combined with the minimally invasive implantation procedure into a bovine disc resulted in a promising functional orthopedic implant for the replacement of the nucleus pulposus.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Degeneração do Disco Intervertebral/cirurgia , Disco Intervertebral/cirurgia , Metacrilatos/química , Núcleo Pulposo/cirurgia , Polietilenoglicóis/química , Animais , Bovinos , Implantes Experimentais , Luz , Procedimentos Cirúrgicos Minimamente Invasivos , Nanofibras/química , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...