Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(25): 259702, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34241522

Assuntos
Natação
2.
ACS Appl Mater Interfaces ; 11(5): 5492-5498, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30620173

RESUMO

Theory predicts that a large spontaneous electric polarization and concomitant inversion symmetry breaking in GeSe monolayers result in a strong shift current in response to their excitation in the visible range. Shift current is a coherent displacement of electron density on the order of a lattice constant upon above-bandgap photoexcitation. A second-order nonlinear effect, it is forbidden by the inversion symmetry in the bulk GeSe crystals. Here, we use terahertz (THz) emission spectroscopy to demonstrate that ultrafast photoexcitation with wavelengths straddling both edges of the visible spectrum, 400 and 800 nm, launches a shift current in the surface layer of a bulk GeSe crystal, where the inversion symmetry is broken. The direction of the surface shift current determined from the observed polarity of the emitted THz pulses depends only on the orientation of the sample and not on the linear polarization direction of the excitation. Strong absorption by the low-frequency infrared-active phonons in the bulk of GeSe limits the bandwidth and the amplitude of the emitted THz pulses. We predict that reducing GeSe thickness to a monolayer or a few layers will result in a highly efficient broadband THz emission. Experimental demonstration of THz emission by the surface shift current in bulk GeSe crystals puts this 2D material forward as a candidate for next-generation shift current photovoltaics, nonlinear photonic devices, and THz sources.

3.
Phys Rev Lett ; 121(17): 176604, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411936

RESUMO

We investigate a physical divergence of the third order polarization susceptibility representing a photoinduced current in biased crystalline insulators. This current grows quadratically with illumination time in the absence of momentum relaxation and saturation; we refer to it as the jerk current. Two contributions to the current are identified. The first is a hydrodynamic acceleration of optically injected carriers by the static electric field, and the second is the change in the carrier injection rate in the presence of the static electric field. The jerk current can have a component perpendicular to the static field, a feature not captured by standard hydrodynamic descriptions of carriers in electric fields. We suggest an experiment to detect the jerk current and some of its interesting features.

4.
Phys Rev Lett ; 119(6): 067402, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949640

RESUMO

We use a first-principles density functional theory approach to calculate the shift current and linear absorption of uniformly illuminated single-layer Ge and Sn monochalcogenides. We predict strong absorption in the visible spectrum and a large effective three-dimensional shift current (∼100 µA/V^{2}), larger than has been previously observed in other polar systems. Moreover, we show that the integral of the shift-current tensor is correlated to the large spontaneous effective three-dimensional electric polarization (∼1.9 C/m^{2}). Our calculations indicate that the shift current will be largest in the visible spectrum, suggesting that these monochalcogenides may be promising for polar optoelectronic devices. A Rice-Mele tight-binding model is used to rationalize the shift-current response for these systems, and its dependence on polarization, in general terms with implications for other polar materials.

5.
J Phys Condens Matter ; 29(43): 43LT01, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28895875

RESUMO

The two-dimensional ferroelectrics GeS, GeSe, SnS and SnSe are expected to have large spontaneous in-plane electric polarization and enhanced shift-current response. Using density functional methods, we show that these materials also exhibit the largest effective second harmonic generation reported so far. It can reach magnitudes up to [Formula: see text] which is about an order of magnitude larger than that of prototypical GaAs. To rationalize this result we model the optical response with a simple one-dimensional two-band model along the spontaneous polarization direction. Within this model the second-harmonic generation tensor is proportional to the shift-current response tensor. The large shift current and second harmonic responses of GeS, GeSe, SnS and SnSe make them promising non-linear materials for optoelectronic applications.

6.
Phys Rev Lett ; 117(24): 246802, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-28009208

RESUMO

GeSe and SnSe monochalcogenide monolayers and bilayers undergo a two-dimensional phase transition from a rectangular unit cell to a square unit cell at a critical temperature T_{c} well below the melting point. Its consequences on material properties are studied within the framework of Car-Parrinello molecular dynamics and density-functional theory. No in-gap states develop as the structural transition takes place, so that these phase-change materials remain semiconducting below and above T_{c}. As the in-plane lattice transforms from a rectangle into a square at T_{c}, the electronic, spin, optical, and piezoelectric properties dramatically depart from earlier predictions. Indeed, the Y and X points in the Brillouin zone become effectively equivalent at T_{c}, leading to a symmetric electronic structure. The spin polarization at the conduction valley edge vanishes, and the hole conductivity must display an anomalous thermal increase at T_{c}. The linear optical absorption band edge must change its polarization as well, making this structural and electronic evolution verifiable by optical means. Much excitement is drawn by theoretical predictions of giant piezoelectricity and ferroelectricity in these materials, and we estimate a pyroelectric response of about 3×10^{-12} C/K m here. These results uncover the fundamental role of temperature as a control knob for the physical properties of few-layer group-IV monochalcogenides.

7.
J Phys Condens Matter ; 27(42): 422001, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26440802

RESUMO

We calculate the local density of states of two prototypical topological insulators (Bi2Se3 and Bi2Te2Se) as a function of distance from the surface within density functional theory. We find that, in the absence of disorder or doping, there is a 2 nm thick surface dipole the origin of which is the occupation of the topological surface states above the Dirac point. As a consequence, the bottom of the conduction band is bent upward by about 75 meV near the surface, and there is a hump-like feature associated with the top of the valence band. We expect that band bending will occur in all pristine topological insulators as long as the Fermi level does not cross the Dirac point. Our results show that topological insulators are intrinsic Schottky barrier solar cells.

8.
Phys Rev Lett ; 115(11): 116801, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26406846

RESUMO

The interaction between light and novel two-dimensional electronic states holds promise to realize new fundamental physics and optical devices. Here, we use pump-probe photoemission spectroscopy to study the optically excited Dirac surface states in the bulk-insulating topological insulator Bi_{2}Te_{2}Se and reveal optical properties that are in sharp contrast to those of bulk-metallic topological insulators. We observe a gigantic optical lifetime exceeding 4 µs (1 µs=10^{-6} s) for the surface states in Bi_{2}Te_{2}Se, whereas the lifetime in most topological insulators, such as Bi_{2}Se_{3}, has been limited to a few picoseconds (1 ps=10^{-12} s). Moreover, we discover a surface photovoltage, a shift of the chemical potential of the Dirac surface states, as large as 100 mV. Our results demonstrate a rare platform to study charge excitation and relaxation in energy and momentum space in a two-dimensional system.

9.
Phys Rev Lett ; 114(24): 246802, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26196995

RESUMO

Circularly polarized light opens a gap in the Dirac spectrum of graphene and topological insulator (TI) surfaces, thereby inducing a quantum Hall-like phase. We propose to detect the accompanying edge states and their current by the magnetic field they produce. The topological nature of the edge states is reflected in the mean orbital magnetization of the sample, which shows a universal linear dependence as a function of a generalized chemical potential-independent of the driving details and the properties of the material. The proposed protocol overcomes several typically encountered problems in the realization and measurement of Floquet phases, including the destructive effects of phonons and coupled electron baths and provides a way to occupy the induced edge states selectively. We estimate practical experimental parameters and conclude that the magnetization signature of the Floquet topological phase may be detectable with current techniques.

10.
Phys Rev Lett ; 110(18): 186803, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23683232

RESUMO

We theoretically consider the ubiquitous soft gap measured in the tunneling conductance of semiconductor-superconductor hybrid structures, in which recently observed signatures of elusive Majorana bound states have created much excitement. We systematically study the effects of magnetic and nonmagnetic disorder, temperature, dissipative Cooper pair breaking, and interface inhomogeneity, which could lead to a soft gap. We find that interface inhomogeneity with moderate dissipation is the only viable mechanism that is consistent with the experimental observations. Our work indicates that improving the quality of the superconductor-semiconductor interface should result in a harder induced gap.

11.
Phys Rev Lett ; 103(20): 205301, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-20365988

RESUMO

It is shown that a homogeneous two-component Fermi gas with (long-range) dipolar and short-range isotropic interactions has a ferronematic phase for suitable values of the dipolar and short-range coupling constants. The ferronematic phase is characterized by having a nonzero magnetization and long-range orientational uniaxial order. The Fermi surface of the spin-up (-down) component is elongated (compressed) along the direction of the magnetization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...