Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 394: 130163, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070577

RESUMO

Reported ethanol titres from hydrolysis-fermentation of the degraded fibres in paper sludge (PS) waste, generally obtained under fed-batch submerged conditions, can be improved through fermentation processes at high solids loadings, as demonstrated in the present study with two industrial PS wastes at enzyme dosages appropriate for solids loadings up to 40% (w/w). The industrial yeast,Saccharomyces cerevisiaestrain Ethanol Red®, was compared to two genetically engineeredS. cerevisiaestrains, namely Cellusec® 1.0 and Cellusec® 2.0, capable of xylose utilisation, and xylose utilisation and cellulase production, respectively. High-solids batch fermentations were conducted in 3 L horizontal rotating reactors and ethanol titres of 100.8 and 73.3 g/L were obtained for virgin pulp and corrugated recycle PS, respectively, at 40% (w/w) solids loading using Ethanol Red®. Xylose utilisation by Cellusec® 1.0 improved ethanol titres by up to 10.3%, while exogenous cellulolytic enzyme requirements were reduced by up to 50% using cellulase-producing Cellusec® 2.0.


Assuntos
Celulase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Esgotos , Xilose/metabolismo , Etanol/metabolismo , Celulase/metabolismo , Fermentação , Hidrólise , Resíduos Industriais
2.
Folia Microbiol (Praha) ; 67(2): 339-350, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35133569

RESUMO

Fructooligosaccharides (FOS) are compounds possessing various health properties and are added to functional foods as prebiotics. The commercial production of FOS is done through the enzymatic transfructolysation of sucrose by ß-fructofuranosidases which is found in various organisms of which Aureobasidium pullulans and Aspergillus niger are the most well known. This study overexpressed two differently codon-optimized variations of the Aspergillus fijiensis ß-fructofuranosidase-encoding gene (fopA) under the transcriptional control of either the alcohol oxidase (AOX1) or glyceraldehyde-3-phosphate dehydrogenase (GAP) promoters. When cultivated in shake flasks, the two codon-optimized variants displayed similar volumetric enzyme activities when expressed under control of the same promoter with the GAP strains producing 11.7 U/ml and 12.7 U/ml, respectively, and the AOX1 strains 95.8 U/ml and 98.6 U/ml, respectively. However, the highest production levels were achieved for both codon-optimized genes when expressed under control of the AOX1 promoter. The AOX1 promoter was superior to the GAP promoter in bioreactor cultivations for both codon-optimized genes with 13,702 U/ml and 2718 U/ml for the AOX1 promoter for ATUM and GeneArt®, respectively, and 6057 U/ml and 1790 U/ml for the GAP promoter for ATUM and GeneArt®, respectively. The ATUM-optimized gene produced higher enzyme activities when compared to the one from GeneArt®, under the control of both promoters.


Assuntos
Pichia , beta-Frutofuranosidase , Aspergillus , Códon/genética , Pichia/genética , Proteínas Recombinantes/genética , Saccharomycetales , beta-Frutofuranosidase/genética
3.
Appl Microbiol Biotechnol ; 106(1): 455-468, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34870737

RESUMO

The fermentation of spent sulphite liquor (SSL) from the pulping of hardwoods is limited by the combination of xylose, the primary fermentable sugar and high concentrations of microbial inhibitors that decrease the yeast fermentation ability. The inhibitor resistance phenotypes of xylose-capable Saccharomyces cerevisiae strains were therefore enhanced by combining rational engineering for multi-inhibitor tolerance, with adaptation in concentrated hardwood SSL as selective pressure. The adapted strains were assessed in fermentations with 60-80% v/v concentrated SSL under industrially relevant fermentation conditions. During adaptation, strains produced ethanol concentrations between 11.0 and 15.4 g/L in the range of that reported in literature. The adapted TFA40 and TP50 strains displayed enhanced inhibitor resistance phenotypes and were able to ferment xylose-rich SSL at pH below 5, exhibiting improved ethanol yields relative to the reference strain. Using yeast extract and peptone as nitrogen source in concentrated SSL fermentations further improved ethanol yields. However, strains exhibited a trade-off between resistance and ethanol productivity, indicating a carbon/energy cost for the expression of this inhibitor tolerance phenotype. KEY POINTS : • Achieved fermentation of xylose-rich hardwood spent sulphite liquor at pH below 5.0 • Adaptation of xylose-capable S. cerevisiae in concentrated spent sulphite liquor • Adapted strains exhibited enhanced inhibitor resistance phenotypes.


Assuntos
Saccharomyces cerevisiae , Xilose , Etanol , Fermentação , Sulfitos
4.
Bioprocess Biosyst Eng ; 44(12): 2655-2665, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34499236

RESUMO

Non-Saccharomyces wine yeasts are of increasing importance due to their influence on the organoleptic properties of wine and thus the factors influencing the biomass production of these yeasts, as starter cultures, are of commercial value. Therefore, the effects of growth rates on the biomass yield (Yx/s) and fermentation performance of non-Saccharomyces yeasts at bench and pilot scale were examined. The fermentative performance and (Yx/s) were optimised, in aerobic fed-batch cultivations, to produce commercial wine seed cultures of Lachancea thermotolerans Y1240, Issatchenkia orientalis Y1161 and Metschnikowia pulcherrima Y1337. Saccharomyces cerevisiae (Lalvin EC1118) was used as a benchmark. A Crabtree positive response was shown by L. thermotolerans in a molasses-based industrial medium, at growth rates exceeding 0.21 h-1 (µcrit), resulting in a Yx/s of 0.76 g/g at 0.21 h-1 (46% of µmax) in the aerobic bioreactor-grown fed-batch culture at bench scale. At pilot scale and 0.133 h-1 (36% of µmax), this yeast exhibited ethanol concentrations reaching 10.61 g/l, as a possible result of substrate gradients. Crabtree negative responses were observed for I. orientalis and M. pulcherrima resulting in Yx/s of 0.83 g/g and 0.68 g/g, respectively, below 32% of µmax. The Yx/s of M. pulcherrima, I. orientalis and L. thermotolerans was maximised at growth rates between 0.10 and 0.12 h-1 and the fermentative capacity of these yeasts was maximised at these lower growth rates.


Assuntos
Saccharomyces/crescimento & desenvolvimento , Vinho , Aerobiose , Reatores Biológicos , Meios de Cultura , Fermentação
5.
Biotechnol Biofuels ; 14(1): 173, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454598

RESUMO

BACKGROUND: The fermentation of lignocellulose hydrolysates to ethanol requires robust xylose-capable Saccharomyces cerevisiae strains able to operate in the presence of microbial inhibitory stresses. This study aimed at developing industrial S. cerevisiae strains with enhanced tolerance towards pretreatment-derived microbial inhibitors, by identifying novel gene combinations that confer resistance to multiple inhibitors (thus cumulative inhibitor resistance phenotype) with minimum impact on the xylose fermentation ability. The strategy consisted of multiple sequential delta-integrations of double-gene cassettes containing one gene conferring broad inhibitor tolerance (ARI1, PAD1 or TAL1) coupled with an inhibitor-specific gene (ADH6, FDH1 or ICT1). The performances of the transformants were compared with the parental strain in terms of biomass growth, ethanol yields and productivity, as well as detoxification capacities in a synthetic inhibitor cocktail, sugarcane bagasse hydrolysate as well as hardwood spent sulphite liquor. RESULTS: The first and second round of delta-integrated transformants exhibited a trade-off between biomass and ethanol yield. Transformants showed increased inhibitor resistance phenotypes relative to parental controls specifically in fermentations with concentrated spent sulphite liquors at 40% and 80% v/v concentrations in 2% SC media. Unexpectedly, the xylose fermentation capacity of the transformants was reduced compared to the parental control, but certain combinations of genes had a minor impact (e.g. TAL1 + FDH1). The TAL1 + ICT1 combination negatively impacted on both biomass growth and ethanol yield, which could be linked to the ICT1 protein increasing transformant susceptibility to weak acids and temperature due to cell membrane changes. CONCLUSIONS: The integration of the selected genes was proven to increase tolerance to pretreatment inhibitors in synthetic or industrial hydrolysates, but they were limited to the fermentation of glucose. However, some gene combination sequences had a reduced impact on xylose conversion.

6.
Appl Biochem Biotechnol ; 193(6): 1979-2003, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33534043

RESUMO

Brewers' spent grains (BSG) make up to 85% of a brewery's solid waste, and is either sent to landfill or sold as cheap animal feed supplement. Xylo-oligosaccharides (XOS) obtained from BSG are antioxidants and prebiotics that can be used in food formulations as low-calorie sweeteners and texturisers. The effect of extremely low acid (ELA) catalysis in liquid hot water (LHW) hydrothermal treatment (HTT) was assessed using BSG with dry matter contents of 15% and 25%, achieved by dewatering using a screw press. Batch experiments at low acid loadings of 5, 12.5 and 20 mg/g dry mass and temperatures of 120, 150 and 170 °C significantly affected XOS yield at both levels of dry mass considered. Maximum XOS yields of 76.4% (16.6 g/l) and 65.5% (31.7 g/l) were achieved from raw BSG and screw pressed BSG respectively, both at 170 °C and using 5 mg acid/g dry mass, after 15 min and 5 min, respectively. These XOS yields were obtained with BSG containing up to 63% less water and temperatures more than 20 °C lower than that reported previously. The finding confirms that ELA dosing in LHW HTT allows lowering of the required temperature that can result in a reduction of degradation products, which is especially relevant under high solid conditions. This substantial XOS production intensification through higher solid loadings in HTT not only achieved high product yield, but also provided benefits such as increased product concentrations and decreased process heat requirements.


Assuntos
Grão Comestível/química , Glucuronatos/química , Temperatura Alta , Oligossacarídeos/química , Água/química , Ácidos/química , Catálise
7.
Prep Biochem Biotechnol ; 51(5): 440-449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33044121

RESUMO

Commercial production of inulooligosaccharides (IOS) relies largely on chicory roots. However, Jerusalem artichoke (JA) tubers provide a suitable alternative due to their high inulin content and low cultivation requirements. In this study, three inulin-rich substrate preparations from JA were investigated to maximize IOS production, namely powder from dried JA tuber slices (Substrate 1), solid residues after extracting protein from the JA powder (Substrate 2) and an inulin-rich fraction extracted from protein extraction residues (Substrate 3). The preferred temperature, pH and inulin substrate concentration were determined after which enzyme dosage and extraction time were optimized to maximize IOS extraction from the three substrates, using pure chicory inulin as benchmark. Under the optimal conditions, Substrate 3 resulted in the highest IOS yield of 82.3% (w/winulin). However, IOS production from the Substrate 1 proved more efficient since it renders the highest overall IOS yield (mass of IOS per mass of the starting biomass). In the case of co-production of protein and IOS from the JA tuber in a biorefinery concept, IOS production from the Substrate 2 is preferred since it reduces the inulin losses incurred during substrate preparation. For all the inulin-rich substrates studied, an enzyme dosage of 14.8 U/ginulin was found to be optimal at reaction time less than 6 h. JA tuber exhibited excellent potential for commercial production of IOS with improved yield and the possible advantage of a reduced biomass cost.


Assuntos
Helianthus/química , Inulina/química , Oligossacarídeos , Tubérculos/química , Glicosídeo Hidrolases/química , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação
8.
J Food Sci Technol ; 57(2): 775-786, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32116386

RESUMO

An increase in inulin and plant-protein based nutraceutical demand ultimately puts pressure on available resources. Therefore, there is a need to prospect for supplementary feedstocks and sustainable ways to exploit them. The aim of this study was to explore the technical feasibility of sequential extraction of inulin and protein from Jerusalem artichoke tubers and understand the interrelationships between processes and product functional properties. The response surface methodology was used to determine the optimal parameters for sequential extraction. Protein functional properties analysis was done to identify the effects of the extraction process. The extraction approach adopted in this study was preceded by mechanical pressing of the tuber to yield a protein-rich juice. However, only 40.8% of the protein was recovered from the juice, therefore a subsequent solvent extraction step followed to extract the residual protein and inulin retained in the solids. Selective extraction was achieved when protein was solubilised in the first step of solvent extraction. The overall protein and inulin yields from pressing and both sequential extraction steps were 71.88 and 67.6%, respectively. The inulin yields were substantially higher than the maximum overall yields when inulin extraction, from the pressed tuber, was performed first thus improving yields from 57.3 to 67.6%. Consequently, mechanical pressing improved the overall protein yield. Sequential extraction resulted in an inulin extract with minimal protein contamination compared to the conventional method. Therefore, sequential extraction was efficient in yielding extracts with reduced impurities and good functional properties.

9.
Bioresour Technol ; 294: 122121, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31561152

RESUMO

The application of steam explosion pre-treatment to extract xylan-rich biopolymers from alkali-impregnated lignocelluloses, while simultaneously increasing the enzymatic digestibility of cellulose, was investigated. Steam-enhanced extraction of xylan from sugarcane trash (SCT) and aspen wood (AW) was performed at varying temperatures (176-204 °C) and retention times (3-17 min) after the impregnation of biomass samples with sodium hydroxide at 1:20 (w/w) solid loading ratio. Xylan extraction and cellulose digestibility results were statistically analysed to fix the condition/s for significantly enhanced values. Accordingly, maximum xylan yields of 51 and 24%, and highest cellulose digestibility of 92 and 81%, were attained for SCT and AW respectively following their pre-treatment at 204 °C for 10 min. At this most-severe condition, neither xylose nor furfural - a degradation product from xylose - were observed in the hemicellulose extract, indicating steam explosion pre-treatment with alkali impregnation of lignocelluloses as viable biorefinery approach to co-produce xylan biopolymers and bioethanol.


Assuntos
Álcalis , Vapor , Hidrólise , Lignina , Polissacarídeos
10.
Bioresour Technol ; 289: 121635, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31254898

RESUMO

Global concerns about depletion of fossil reserves has driven countries towards bio-economies utilising mostly first generation feedstocks. The economic viability of energy self-sufficient biorefineries processing sugarcane lignocelluloses into sorbitol or glucaric acid and electricity was investigated. Aspen Plus® simulations represented glucose conversion processes via SO2-steam explosion or dilute acid pre-treatment, followed by enzymatic hydrolysis. The most economically viable sorbitol scenario using dilute acid pretreatment with a capital investment cost per litre of US$ 3.96/L was marginally profitable having a selling price 5% below the US$ 655/t market price. To secure private investment, the sorbitol selling price should reach US$ 1283/t.


Assuntos
Sorbitol , Açúcares , Eletricidade , Ácido Glucárico , Lignina
11.
Biotechnol Prog ; 35(3): e2797, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30816638

RESUMO

The immobilization of ß-fructofuranosidase for short-chain fructooligosaccharide (scFOS) synthesis holds the potential for a more efficient use of the biocatalyst. However, the choice of carrier and immobilization technique is a key to achieving that efficiency. In this study, calcium alginate (CA), Amberlite IRA 900 (AI900) and Dowex Marathon MSA (DMM) were tested as supports for immobilizing a novel engineered ß-fructofuranosidase from Aspergillus japonicus for scFOS synthesis. Several immobilization parameters were estimated to ascertain the effectiveness of the carriers in immobilizing the enzyme. The performance of the immobilized biocatalysts are compared in terms of the yield of scFOS produced and reusability. The selection of carriers and reagents was motivated by the need to ensure safety of application in the production of food-grade products. The CA and AI900 both recorded impressive immobilization yields of 82 and 62%, respectively, while the DMM recorded 47%. Enzyme immobilizations on CA, AI900 and DMM showed activity recoveries of 23, 27, and 17%, respectively. The CA, AI900 immobilized and the free enzymes recorded their highest scFOS yields of 59, 53, and 61%, respectively. The AI900 immobilized enzyme produced a consistent scFOS yield and composition for 12 batch cycles but for the CA immobilized enzyme, only 6 batch cycles gave a consistent scFOS yield. In its first record of application in scFOS production, the AI900 anion exchange resin exhibited potential as an adequate carrier for industrial application with possible savings on cost of immobilization and reduced technical difficulty.


Assuntos
Alginatos/química , Aspergillus/enzimologia , Oligossacarídeos/química , Resinas Sintéticas/química , beta-Frutofuranosidase/química , Aspergillus/genética , Biocatálise , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Temperatura , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
12.
Bioresour Technol ; 272: 326-336, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30384207

RESUMO

The co-digestion of pretreated sugarcane lignocelluloses with dairy cow manure (DCM) as a bioenergy production and waste management strategy, for intensive livestock farms located in sugarcane regions, was investigated. Ammonia fiber expansion (AFEX) increased the nitrogen content and accelerated the biodegradability of sugarcane bagasse (SCB) and cane leaf matter (CLM) through the cleavage of lignin carbohydrate crosslinks, resulting in the highest specific methane yields (292-299 L CH4/kg VSadded), biogas methane content (57-59% v/v) and biodegradation rates, with or without co-digestion with DCM. To obtain comparable methane yields, untreated and steam exploded (StEx) SCB and CLM had to be co-digested with DCM, at mass ratios providing initial C/N ratios in the range of 18 to 35. Co-digestion with DCM improved the nutrient content of the solid digestates, providing digestates that could be used as biofertilizer to replace CLM that is removed from sugarcane fields during green harvesting.


Assuntos
Amônia/metabolismo , Celulose/metabolismo , Esterco , Saccharum/metabolismo , Anaerobiose , Animais , Biodegradação Ambiental , Biocombustíveis , Bovinos , Fibras na Dieta/metabolismo , Feminino , Gado/metabolismo , Metano/biossíntese , Vapor
13.
Biotechnol Biofuels ; 11: 127, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755586

RESUMO

BACKGROUND: Expanding biofuel markets are challenged by the need to meet future biofuel demands and mitigate greenhouse gas emissions, while using domestically available feedstock sustainably. In the context of the sugar industry, exploiting under-utilized cane leaf matter (CLM) in addition to surplus sugarcane bagasse as supplementary feedstock for second-generation ethanol production has the potential to improve bioenergy yields per unit land. In this study, the ethanol yields and processing bottlenecks of ammonia fibre expansion (AFEX™) and steam explosion (StEx) as adopted technologies for pretreating sugarcane bagasse and CLM were experimentally measured and compared for the first time. RESULTS: Ethanol yields between 249 and 256 kg Mg-1 raw dry biomass (RDM) were obtained with AFEX™-pretreated sugarcane bagasse and CLM after high solids loading enzymatic hydrolysis and fermentation. In contrast, StEx-pretreated sugarcane bagasse and CLM resulted in substantially lower ethanol yields that ranged between 162 and 203 kg Mg-1 RDM. The ethanol yields from StEx-treated sugarcane residues were limited by the aggregated effect of sugar degradation during pretreatment, enzyme inhibition during enzymatic hydrolysis and microbial inhibition of S. cerevisiae 424A (LNH-ST) during fermentation. However, relatively high enzyme dosages (> 20 mg g-1 glucan) were required irrespective of pretreatment method to reach 75% carbohydrate conversion, even when optimal combinations of Cellic® CTec3, Cellic® HTec3 and Pectinex Ultra-SP were used. Ethanol yields per hectare sugarcane cultivation area were estimated at 4496 and 3416 L ha-1 for biorefineries using AFEX™- or StEx-treated sugarcane residues, respectively. CONCLUSIONS: AFEX™ proved to be a more effective pretreatment method for sugarcane residues relative to StEx due to the higher fermentable sugar recovery and enzymatic hydrolysate fermentability after high solids loading enzymatic hydrolysis and fermentation by S. cerevisiae 424A (LNH-ST). The identification of auxiliary enzyme activities, adequate process integration and the use of robust xylose-fermenting ethanologens were identified as opportunities to further improve ethanol yields from AFEX™- and StEx-treated sugarcane residues.

14.
Yeast ; 35(9): 519-529, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29709079

RESUMO

Cervical cancer is ranked the fourth most common cancer in women worldwide. Despite two prophylactic vaccines being commercially available, they are unaffordable for most women in developing countries. We compared the optimized expression of monomers of the unique HPV type 16 L1-L2 chimeric protein (SAF) in two yeast strains of Pichia pastoris, KM71 (Muts ) and GS115 (Mut+ ), with Hansenula polymorpha NCYC 495 to determine the preferred host in bioreactors. SAF was uniquely created by replacing the h4 helix of the HPV-16 capsid L1 protein with an L2 peptide. Two different feeding strategies in fed-batch cultures of P. pastoris Muts were evaluated: a predetermined feed rate vs. feeding based on the oxygen consumption by maintaining constant dissolved oxygen levels (DO stat). All cultures showed a significant increase in biomass when methanol was fed using the DO stat method. In P. pastoris the SAF concentrations were higher in the Muts strains than in the Mut+ strains. However, H. polymorpha produced the highest level of SAF at 132.10 mg L-1 culture while P. pastoris Muts only produced 23.61 mg L-1 . H. polymorpha showed greater potential for the expression of HPV-16 L1/L2 chimeric proteins despite the track record of P. pastoris as a high-level producer of heterologous proteins.


Assuntos
Proteínas do Capsídeo/biossíntese , Expressão Gênica , Proteínas Oncogênicas Virais/biossíntese , Pichia/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Biomassa , Reatores Biológicos , Proteínas do Capsídeo/genética , Meios de Cultura/química , Humanos , Metanol/metabolismo , Proteínas Oncogênicas Virais/genética , Oxigênio/análise , Oxigênio/metabolismo , Pichia/genética , Pichia/crescimento & desenvolvimento , Proteínas Recombinantes de Fusão/genética
15.
Bioresour Technol ; 262: 159-168, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29704763

RESUMO

Itaconic acid has economic potential as a commodity biochemical for the sugar industry, but its production is limited due to high production costs. Using cheaper and alternative lignocellulosic feedstocks together with achieving higher product titres have been identified as potential strategies for viable IA production. Consequently the use of sugarcane bagasse and trash for the production of itaconic acid (IA) and electricity have been investigated for an integrated biorefinery, where the production facility is annexed to an existing sugar mill and new combined heat and power (CHP) plant. Three IA biorefinery scenarios were designed and simulated in Aspen Plus®. Subsequent economic analyses indicated that cheaper feedstocks reduced the IA production cost from 1565.5 US$/t for glucose to 616.5 US$/t, but coal supplementation was required to sufficiently lower the production cost to 604.3 US$/t for a competitive IA selling price of 1740 US$/t, compared to the market price of 1800 US$/t.


Assuntos
Fontes de Energia Bioelétrica , Lignina , Saccharum , Celulose , Eletricidade , Succinatos
16.
Bioresour Technol ; 243: 284-293, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28675842

RESUMO

Pyrolysis of invasive non-indigenous plants, Lantana camara (LC) and Mimosa pigra (MP) was conducted at milligram-scale for optimisation of temperature, heating rate and hold time on char yield and higher heating value (HHV). The impact of scaling-up to gram-scale was also studied, with chromatography used to correlate gas composition with HHV evolution. Statistically significant effects of temperature on char yield and HHV were obtained, while heating rate and hold time effects were insignificant. Milligram-scale maximised HHVs were 30.03MJkg-1 (525°C) and 31.01MJkg-1 (580°C) for LC and MP, respectively. Higher char yields and HHVs for MP were attributed to increased lignin content. Scaling-up promoted secondary char formation thereby increasing HHVs, 30.82MJkg-1 for LC and 31.61MJkg-1 for MP. Incondensable gas analysis showed that temperature increase beyond preferred values caused dehydrogenation that decreased HHV. Similarly, CO evolution profile explained differences in optimal HHV temperatures.


Assuntos
Lantana , Mimosa , Calefação , Temperatura Alta , Temperatura
17.
Bioresour Technol ; 241: 669-680, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28609755

RESUMO

The viability of single-step microwave-induced pressurized hot water conditions for co-production of xylan-based biopolymers and bioethanol from aspenwood sawdust and sugarcane trash was investigated. Extraction of hemicelluloses was conducted using microwave-assisted pressurized hot water system. The effects of temperature and time on extraction yield and enzymatic digestibility of resulting solids were determined. Temperatures between 170-200°C for aspenwood and 165-195°C for sugarcane trash; retention times between 8-22min for both feedstocks, were selected for optimization purpose. Maximum xylan extraction yields of 66 and 50%, and highest cellulose digestibilities of 78 and 74%, were attained for aspenwood and sugarcane trash respectively. Monomeric xylose yields for both feedstocks were below 7%, showing that the xylan extracts were predominantly in non-monomeric form. Thus, single-step microwave-assisted hot water method is viable biorefinery approach to extract xylan from lignocelluloses while rendering the solid residues sufficiently digestible for ethanol production.


Assuntos
Micro-Ondas , Polissacarídeos , Celulose , Temperatura Alta , Hidrólise , Água
18.
Bioresour Technol ; 239: 37-48, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28500887

RESUMO

In this study, lignocellulose biorefineries annexed to a typical sugar mill were investigated to produce either ethanol (EtOH) or 1,3-butadiene (BD), utilizing bagasse and trash as feedstock. Aspen simulation of the scenarios were developed and evaluated in terms of economic and environmental performance. The minimum selling prices (MSPs) for bio-based BD and EtOH production were 2.9-3.3 and 1.26-1.38-fold higher than market prices, respectively. Based on the sensitivity analysis results, capital investment, Internal Rate of Return and extension of annual operating time had the greatest impact on the MSP. Monte Carlo simulation demonstrated that EtOH and BD productions could be profitable if the average of ten-year historical price increases by 1.05 and 1.9-fold, respectively. The fossil-based route was found inferior to bio-based pathway across all investigated environmental impact categories, due to burdens associated with oil extraction.


Assuntos
Reatores Biológicos , Butadienos , Poluentes Ambientais , Biomassa , Meio Ambiente , Etanol
19.
Biotechnol Biofuels ; 10: 87, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28400858

RESUMO

BACKGROUND: Driven by a range of sustainability challenges, e.g. climate change, resource depletion and expanding populations, a circular bioeconomy is emerging and expected to evolve progressively in the coming decades. South Africa along with other BRICS countries (Brazil, Russia, India and China) represents the emerging bioeconomy and contributes significantly to global sugar market. In our research, South Africa is used as a case study to demonstrate the sustainable design for the future biorefineries annexed to existing sugar industry. Detailed techno-economic evaluation and Life Cycle Assessment (LCA) were applied to model alternative routes for converting sugarcane residues (bagasse and trash) to selected biofuel and/or biochemicals (ethanol, ethanol and lactic acid, ethanol and furfural, butanol, methanol and Fischer-Tropsch synthesis, with co-production of surplus electricity) in an energy self-sufficient biorefinery system. RESULTS: Economic assessment indicated that methanol synthesis with an internal rate of return (IRR) of 16.7% and ethanol-lactic acid co-production (20.5%) met the minimum investment criteria of 15%, while the latter had the lowest sensitivity to market price amongst all the scenarios. LCA results demonstrated that sugarcane cultivation was the most significant contributor to environmental impacts in all of the scenarios, other than the furfural production scenario in which a key step, a biphasic process with tetrahydrofuran solvent, had the most significant contribution. CONCLUSION: Overall, the thermochemical routes presented environmental advantages over biochemical pathways on most of the impact categories, except for acidification and eutrophication. Of the investigated scenarios, furfural production delivered the inferior environmental performance, while methanol production performed best due to its low reagent consumption. The combined techno-economic and environmental assessments identified the performance-limiting steps in the 2G biorefinery design for sugarcane industry and highlighted the technology development opportunities under circular bioeconomy context.

20.
Bioresour Technol ; 224: 314-326, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27816352

RESUMO

In this work different biorefinery scenarios were investigated, concerning the co-production of bioethanol and electricity from available lignocellulose at a typical sugar mill, as possible extensions to the current combustion of bagasse for steam and electricity production and burning trash on-filed. In scenario 1, the whole bagasse and brown leaves is utilized in a biorefinery and coal is burnt in the existing inefficient sugar mill boiler. Scenario 2 & 3 are assumed with a new centralized CHP unit without/with coal co-combustion, respectively. Also, through scenarios 4 & 5, the effect of water insoluble loading were studied. All scenarios provided energy for the sugarmill and the ethanol plant, with the export of surplus electricity. Economic analysis determined that scenario 1 was the most viable scenario due to less capital cost and economies-of scale. Based on Life Cycle Assessment (LCA) results, scenario 2 outperformed the other scenarios, while three scenarios showed lower contribution to environmental burdens than the current situation.


Assuntos
Celulose/metabolismo , Eletricidade , Etanol/metabolismo , Lignina/metabolismo , Carvão Mineral , Análise Custo-Benefício , Meio Ambiente , Etanol/economia , Resíduos de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...