Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
EMBO Mol Med ; 15(6): e16505, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161793

RESUMO

Analysis of circulating tumor DNA (ctDNA) to monitor cancer dynamics and detect minimal residual disease has been an area of increasing interest. Multiple methods have been proposed but few studies have compared the performance of different approaches. Here, we compare detection of ctDNA in serial plasma samples from patients with breast cancer using different tumor-informed and tumor-naïve assays designed to detect structural variants (SVs), single nucleotide variants (SNVs), and/or somatic copy-number aberrations, by multiplex PCR, hybrid capture, and different depths of whole-genome sequencing. Our results demonstrate that the ctDNA dynamics and allele fractions (AFs) were highly concordant when analyzing the same patient samples using different assays. Tumor-informed assays showed the highest sensitivity for detection of ctDNA at low concentrations. Hybrid capture sequencing targeting between 1,347 and 7,491 tumor-identified mutations at high depth was the most sensitive assay, detecting ctDNA down to an AF of 0.00024% (2.4 parts per million, ppm). Multiplex PCR targeting 21-47 tumor-identified SVs per patient detected ctDNA down to 0.00047% AF (4.7 ppm) and has potential as a clinical assay.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA Tumoral Circulante/genética , Mutação
2.
Genome Res ; 32(2): 215-227, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34930798

RESUMO

Current evidence suggests that plasma cell-free DNA (cfDNA) is fragmented around a mode of 166 bp. Data supporting this view has been mainly acquired through the analysis of double-stranded cfDNA. The characteristics and diagnostic potential of single-stranded and damaged double-stranded cfDNA in healthy individuals and cancer patients remain unclear. Here, through a combination of high-affinity magnetic bead-based DNA extraction and single-stranded DNA sequencing library preparation (MB-ssDNA), we report the discovery of a large proportion of cfDNA fragments centered at ∼50 bp. We show that these "ultrashort" cfDNA fragments have a greater relative abundance in plasma of healthy individuals (median = 19.1% of all sequenced cfDNA fragments, n = 28) than in plasma of patients with cancer (median = 14.2%, n = 21, P < 0.0001). The ultrashort cfDNA fragments map to accessible chromatin regions of blood cells, particularly in promoter regions with the potential to adopt G-quadruplex (G4) DNA secondary structures. G4-positive promoter chromatin accessibility is significantly enriched in ultrashort plasma cfDNA fragments from healthy individuals relative to patients with cancers (P < 0.0001), in whom G4-cfDNA enrichment is inversely associated with copy number aberration-inferred tumor fractions. Our findings redraw the landscape of cfDNA fragmentation by identifying and characterizing a novel population of ultrashort plasma cfDNA fragments. Sequencing of MB-ssDNA libraries could facilitate the characterization of gene regulatory regions and DNA secondary structures via liquid biopsy. Our data underline the diagnostic potential of ultrashort cfDNA through classification for cancer patients.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , DNA/genética , DNA de Cadeia Simples , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Análise de Sequência de DNA
3.
EMBO Mol Med ; 13(8): e12881, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34291583

RESUMO

Glioma-derived cell-free DNA (cfDNA) is challenging to detect using liquid biopsy because quantities in body fluids are low. We determined the glioma-derived DNA fraction in cerebrospinal fluid (CSF), plasma, and urine samples from patients using sequencing of personalized capture panels guided by analysis of matched tumor biopsies. By sequencing cfDNA across thousands of mutations, identified individually in each patient's tumor, we detected tumor-derived DNA in the majority of CSF (7/8), plasma (10/12), and urine samples (10/16), with a median tumor fraction of 6.4 × 10-3 , 3.1 × 10-5 , and 4.7 × 10-5 , respectively. We identified a shift in the size distribution of tumor-derived cfDNA fragments in these body fluids. We further analyzed cfDNA fragment sizes using whole-genome sequencing, in urine samples from 35 glioma patients, 27 individuals with non-malignant brain disorders, and 26 healthy individuals. cfDNA in urine of glioma patients was significantly more fragmented compared to urine from patients with non-malignant brain disorders (P = 1.7 × 10-2 ) and healthy individuals (P = 5.2 × 10-9 ). Machine learning models integrating fragment length could differentiate urine samples from glioma patients (AUC = 0.80-0.91) suggesting possibilities for truly non-invasive cancer detection.


Assuntos
Ácidos Nucleicos Livres , Glioma , Biomarcadores Tumorais , Glioma/genética , Humanos , Biópsia Líquida , Mutação , Plasma , Análise de Sequência de DNA
4.
Cancers (Basel) ; 12(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255267

RESUMO

Clinical imaging methods, such as computed tomography (CT), are used for routine tumor response monitoring. Imaging can also reveal intratumoral, intermetastatic, and interpatient heterogeneity, which can be quantified using radiomics. Circulating tumor DNA (ctDNA) in the plasma is a sensitive and specific biomarker for response monitoring. Here we evaluated the interrelationship between circulating tumor DNA mutant allele fraction (ctDNAmaf), obtained by targeted amplicon sequencing and shallow whole genome sequencing, and radiomic measurements of CT heterogeneity in patients with stage IV melanoma. ctDNAmaf and radiomic observations were obtained from 15 patients with a total of 70 CT examinations acquired as part of a prospective trial. 26 of 39 radiomic features showed a significant relationship with log(ctDNAmaf). Principal component analysis was used to define a radiomics signature that predicted ctDNAmaf independent of lesion volume. This radiomics signature and serum lactate dehydrogenase were independent predictors of ctDNAmaf. Together, these results suggest that radiomic features and ctDNAmaf may serve as complementary clinical tools for treatment monitoring.

5.
Proc Natl Acad Sci U S A ; 117(46): 28960-28970, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33127761

RESUMO

Inhibition of the chemokine receptor CXCR4 in combination with blockade of the PD-1/PD-L1 T cell checkpoint induces T cell infiltration and anticancer responses in murine and human pancreatic cancer. Here we elucidate the mechanism by which CXCR4 inhibition affects the tumor immune microenvironment. In human immune cell-based chemotaxis assays, we find that CXCL12-stimulated CXCR4 inhibits the directed migration mediated by CXCR1, CXCR3, CXCR5, CXCR6, and CCR2, respectively, chemokine receptors expressed by all of the immune cell types that participate in an integrated immune response. Inhibiting CXCR4 in an experimental cancer medicine study by 1-wk continuous infusion of the small-molecule inhibitor AMD3100 (plerixafor) induces an integrated immune response that is detected by transcriptional analysis of paired biopsies of metastases from patients with microsatellite stable colorectal and pancreatic cancer. This integrated immune response occurs in three other examples of immune-mediated damage to noninfected tissues: Rejecting renal allografts, melanomas clinically responding to anti-PD1 antibody therapy, and microsatellite instable colorectal cancers. Thus, signaling by CXCR4 causes immune suppression in human pancreatic ductal adenocarcinoma and colorectal cancer by impairing the function of the chemokine receptors that mediate the intratumoral accumulation of immune cells.


Assuntos
Neoplasias Colorretais/metabolismo , Imunidade/imunologia , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores CXCR4/efeitos dos fármacos , Receptores CXCR4/metabolismo , Idoso , Benzilaminas , Carcinoma Ductal Pancreático , Quimiocina CXCL12 , Neoplasias Colorretais/patologia , Ciclamos , Feminino , Compostos Heterocíclicos/antagonistas & inibidores , Humanos , Imunoterapia , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia , Receptores CCR2/metabolismo , Receptores CXCR3/metabolismo , Receptores CXCR5/metabolismo , Receptores CXCR6/metabolismo , Receptores de Interleucina-8A/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/imunologia , Neoplasias Pancreáticas
6.
Sci Transl Med ; 12(548)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32554709

RESUMO

Circulating tumor-derived DNA (ctDNA) can be used to monitor cancer dynamics noninvasively. Detection of ctDNA can be challenging in patients with low-volume or residual disease, where plasma contains very few tumor-derived DNA fragments. We show that sensitivity for ctDNA detection in plasma can be improved by analyzing hundreds to thousands of mutations that are first identified by tumor genotyping. We describe the INtegration of VAriant Reads (INVAR) pipeline, which combines custom error-suppression methods and signal-enrichment approaches based on biological features of ctDNA. With this approach, the detection limit in each sample can be estimated independently based on the number of informative reads sequenced across multiple patient-specific loci. We applied INVAR to custom hybrid-capture sequencing data from 176 plasma samples from 105 patients with melanoma, lung, renal, glioma, and breast cancer across both early and advanced disease. By integrating signal across a median of >105 informative reads, ctDNA was routinely quantified to 1 mutant molecule per 100,000, and in some cases with high tumor mutation burden and/or plasma input material, to parts per million. This resulted in median area under the curve (AUC) values of 0.98 in advanced cancers and 0.80 in early-stage and challenging settings for ctDNA detection. We generalized this method to whole-exome and whole-genome sequencing, showing that INVAR may be applied without requiring personalized sequencing panels so long as a tumor mutation list is available. As tumor sequencing becomes increasingly performed, such methods for personalized cancer monitoring may enhance the sensitivity of cancer liquid biopsies.


Assuntos
DNA Tumoral Circulante , DNA de Neoplasias , Biomarcadores Tumorais , DNA Tumoral Circulante/genética , DNA de Neoplasias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , Mutação/genética
7.
Clin Chem ; 66(5): 697-705, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32268361

RESUMO

BACKGROUND: Recent advances in the study and clinical applications of circulating tumor DNA (ctDNA) are limited by practical considerations of sample collection. Whole-genome sequencing (WGS) is increasingly used for analysis of ctDNA, identifying copy-number alterations and fragmentation patterns. We hypothesized that low-depth/shallow WGS (sWGS) data may be generated from minute amounts of cell-free DNA, and that fragment-size selection may remove contaminating genomic DNA from small blood volumes. Dried blood spots have practical advantages for sample collection, may facilitate serial sampling, and could support novel study designs in humans and animal models. METHODS: We developed a protocol for the isolation and analysis of cell-free DNA from dried blood spots using filter paper cards and bead-based size selection. DNA extracted and size-selected from dried spots was analyzed using sWGS and polymerase chain reaction (PCR). RESULTS: Analyzing a 50 µL dried blood spot from frozen whole blood of a patient with melanoma, we identified ctDNA based on the presence of tumor-specific somatic copy-number alterations, and found a fragment-size profile similar to that observed in plasma DNA. We found alterations in different chromosomes in blood spots from 2 patients with high-grade serous ovarian carcinoma. Extending this approach to serial dried blood spots from mouse xenograft models, we detect tumor-derived cell-free DNA and identified ctDNA from the originally grafted ascites. CONCLUSION: Our data suggest that ctDNA can be detected and monitored in dried blood spots from archived and fresh blood samples, enabling new approaches for sample collection and novel study/trial designs for both patients and in vivo models.


Assuntos
DNA Tumoral Circulante , Animais , DNA Tumoral Circulante/análise , DNA Tumoral Circulante/genética , DNA/análise , Humanos , Camundongos , Reação em Cadeia da Polimerase/métodos , Manejo de Espécimes/métodos , Sequenciamento Completo do Genoma
8.
Genome Med ; 12(1): 23, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111235

RESUMO

BACKGROUND: Cell-free tumor-derived DNA (ctDNA) allows non-invasive monitoring of cancers, but its utility in renal cell cancer (RCC) has not been established. METHODS: Here, a combination of untargeted and targeted sequencing methods, applied to two independent cohorts of patients (n = 91) with various renal tumor subtypes, were used to determine ctDNA content in plasma and urine. RESULTS: Our data revealed lower plasma ctDNA levels in RCC relative to other cancers of similar size and stage, with untargeted detection in 27.5% of patients from both cohorts. A sensitive personalized approach, applied to plasma and urine from select patients (n = 22) improved detection to ~ 50%, including in patients with early-stage disease and even benign lesions. Detection in plasma, but not urine, was more frequent amongst patients with larger tumors and in those patients with venous tumor thrombus. With data from one extensively characterized patient, we observed that plasma and, for the first time, urine ctDNA may better represent tumor heterogeneity than a single tissue biopsy. Furthermore, in a subset of patients (n = 16), longitudinal sampling revealed that ctDNA can track disease course and may pre-empt radiological identification of minimal residual disease or disease progression on systemic therapy. Additional datasets will be required to validate these findings. CONCLUSIONS: These data highlight RCC as a ctDNA-low malignancy. The biological reasons for this are yet to be determined. Nonetheless, our findings indicate potential clinical utility in the management of patients with renal tumors, provided improvement in isolation and detection approaches.


Assuntos
Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Neoplasias Renais/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/urina , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/urina , Feminino , Heterogeneidade Genética , Humanos , Neoplasias Renais/sangue , Neoplasias Renais/patologia , Neoplasias Renais/urina , Masculino , Pessoa de Meia-Idade , Sequenciamento Completo do Genoma
9.
Cancer Res ; 79(1): 220-230, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389699

RESUMO

The factors responsible for the low detection rate of cell-free tumor DNA (ctDNA) in the plasma of patients with glioblastoma (GBM) are currently unknown. In this study, we measured circulating nucleic acids in patient-derived orthotopically implanted xenograft (PDOX) models of GBM (n = 64) and show that tumor size and cell proliferation, but not the integrity of the blood-brain barrier or cell death, affect the release of ctDNA in treatment-naïve GBM PDOX. Analysis of fragment length profiles by shallow genome-wide sequencing (<0.2× coverage) of host (rat) and tumor (human) circulating DNA identified a peak at 145 bp in the human DNA fragments, indicating a difference in the origin or processing of the ctDNA. The concentration of ctDNA correlated with cell death only after treatment with temozolomide and radiotherapy. Digital PCR detection of plasma tumor mitochondrial DNA (tmtDNA), an alternative to detection of nuclear ctDNA, improved plasma DNA detection rate (82% vs. 24%) and allowed detection in cerebrospinal fluid and urine. Mitochondrial mutations are prevalent across all cancers and can be detected with high sensitivity, at low cost, and without prior knowledge of tumor mutations via capture-panel sequencing. Coupled with the observation that mitochondrial copy number increases in glioma, these data suggest analyzing tmtDNA as a more sensitive method to detect and monitor tumor burden in cancer, specifically in GBM, where current methods have largely failed. SIGNIFICANCE: These findings show that detection of tumor mitochondrial DNA is more sensitive than circulating tumor DNA analysis to detect and monitor tumor burden in patient-derived orthotopic xenografts of glioblastoma.


Assuntos
Biomarcadores Tumorais/análise , Líquidos Corporais/química , DNA Tumoral Circulante/análise , DNA Mitocondrial/análise , DNA de Neoplasias/análise , Glioblastoma/diagnóstico , Mitocôndrias/genética , Animais , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , DNA Mitocondrial/genética , DNA de Neoplasias/genética , Feminino , Glioblastoma/sangue , Glioblastoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ratos , Ratos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Transl Med ; 10(466)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404863

RESUMO

Existing methods to improve detection of circulating tumor DNA (ctDNA) have focused on genomic alterations but have rarely considered the biological properties of plasma cell-free DNA (cfDNA). We hypothesized that differences in fragment lengths of circulating DNA could be exploited to enhance sensitivity for detecting the presence of ctDNA and for noninvasive genomic analysis of cancer. We surveyed ctDNA fragment sizes in 344 plasma samples from 200 patients with cancer using low-pass whole-genome sequencing (0.4×). To establish the size distribution of mutant ctDNA, tumor-guided personalized deep sequencing was performed in 19 patients. We detected enrichment of ctDNA in fragment sizes between 90 and 150 bp and developed methods for in vitro and in silico size selection of these fragments. Selecting fragments between 90 and 150 bp improved detection of tumor DNA, with more than twofold median enrichment in >95% of cases and more than fourfold enrichment in >10% of cases. Analysis of size-selected cfDNA identified clinically actionable mutations and copy number alterations that were otherwise not detected. Identification of plasma samples from patients with advanced cancer was improved by predictive models integrating fragment length and copy number analysis of cfDNA, with area under the curve (AUC) >0.99 compared to AUC <0.80 without fragmentation features. Increased identification of cfDNA from patients with glioma, renal, and pancreatic cancer was achieved with AUC > 0.91 compared to AUC < 0.5 without fragmentation features. Fragment size analysis and selective sequencing of specific fragment sizes can boost ctDNA detection and could complement or provide an alternative to deeper sequencing of cfDNA.


Assuntos
DNA Tumoral Circulante/análise , DNA Tumoral Circulante/química , Animais , DNA Tumoral Circulante/sangue , Variações do Número de Cópias de DNA/genética , Genoma Humano , Humanos , Aprendizado de Máquina , Camundongos , Mutação/genética , Sequenciamento Completo do Genoma
11.
J Mol Diagn ; 20(6): 883-892, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30165204

RESUMO

Circulating tumor DNA (ctDNA) offers new opportunities for noninvasive cancer management. Detecting ctDNA in plasma is challenging because it constitutes only a minor fraction of the total cell-free DNA (cfDNA). Pre-analytical factors affect cfDNA levels contributed from leukocyte lysis, hence the ability to detect low-frequency mutant alleles. This study investigates the effects of the delay in processing, storage temperatures, different blood collection tubes, centrifugation protocols, and sample shipment on cfDNA levels. Peripheral blood (n = 231) from cancer patients (n = 62) were collected into K3EDTA or Cell-free DNA BCT tubes and analyzed by digital PCR, targeted amplicon, or shallow whole-genome sequencing. To assess pre-analytic effects, plasma was processed under different conditions after 0, 6, 24, 48, 96 hours, and 1 week at room temperature or 4°C, or using different centrifugation protocols. Digital PCR showed that cfDNA levels increased gradually with time in K3EDTA tubes, but were stable in BCT tubes. K3EDTA samples stored at 4°C showed less variation than room temperature storage, but levels were elevated compared with BCT. A second centrifugation at 3000 × g gave similar cfDNA yields compared with higher-speed centrifugation. Next-generation sequencing showed negligible differences in background error or copy number changes between K3EDTA and BCT, or following shipment in BCT. This study provides insights into the effects of sample processing on ctDNA analysis.


Assuntos
DNA Tumoral Circulante/sangue , Neoplasias/sangue , Manejo de Espécimes/métodos , Alelos , Variações do Número de Cópias de DNA/genética , Humanos , Mutação/genética , Temperatura , Meios de Transporte
12.
EMBO Mol Med ; 10(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29848757

RESUMO

Tumour heterogeneity leads to the development of multiple resistance mechanisms during targeted therapies. Identifying the dominant driver(s) is critical for treatment decision. We studied the relative dynamics of multiple oncogenic drivers in longitudinal plasma of 50 EGFR-mutant non-small-cell lung cancer patients receiving gefitinib and hydroxychloroquine. We performed digital PCR and targeted sequencing on samples from all patients and shallow whole-genome sequencing on samples from three patients who underwent histological transformation to small-cell lung cancer. In 43 patients with known EGFR mutations from tumour, we identified them accurately in plasma of 41 patients (95%, 41/43). We also found additional mutations, including EGFR T790M (31/50, 62%), TP53 (23/50, 46%), PIK3CA (7/50, 14%) and PTEN (4/50, 8%). Patients with both TP53 and EGFR mutations before treatment had worse overall survival than those with only EGFR Patients who progressed without T790M had worse PFS during TKI continuation and developed alternative alterations, including small-cell lung cancer-associated copy number changes and TP53 mutations, that tracked subsequent treatment responses. Longitudinal plasma analysis can help identify dominant resistance mechanisms, including non-druggable genetic information that may guide clinical management.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Gefitinibe/uso terapêutico , Hidroxicloroquina/uso terapêutico , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , DNA de Neoplasias/sangue , Receptores ErbB/genética , Humanos , Estudos Longitudinais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Mutação , Prognóstico , Análise de Sobrevida , Resultado do Tratamento , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
13.
PLoS One ; 13(3): e0193802, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29543828

RESUMO

Circulating tumor DNA (ctDNA) analysis is being incorporated into cancer care; notably in profiling patients to guide treatment decisions. Responses to targeted therapies have been observed in patients with actionable mutations detected in plasma DNA at variant allele fractions (VAFs) below 0.5%. Highly sensitive methods are therefore required for optimal clinical use. To enable objective assessment of assay performance, detailed analytical validation is required. We developed the InVisionFirst™ assay, an assay based on enhanced tagged amplicon sequencing (eTAm-Seq™) technology to profile 36 genes commonly mutated in non-small cell lung cancer (NSCLC) and other cancer types for actionable genomic alterations in cell-free DNA. The assay has been developed to detect point mutations, indels, amplifications and gene fusions that commonly occur in NSCLC. For analytical validation, two 10mL blood tubes were collected from NSCLC patients and healthy volunteer donors. In addition, contrived samples were used to represent a wide spectrum of genetic aberrations and VAFs. Samples were analyzed by multiple operators, at different times and using different reagent Lots. Results were compared with digital PCR (dPCR). The InVisionFirst assay demonstrated an excellent limit of detection, with 99.48% sensitivity for SNVs present at VAF range 0.25%-0.33%, 92.46% sensitivity for indels at 0.25% VAF and a high rate of detection at lower frequencies while retaining high specificity (99.9997% per base). The assay also detected ALK and ROS1 gene fusions, and DNA amplifications in ERBB2, FGFR1, MET and EGFR with high sensitivity and specificity. Comparison between the InVisionFirst assay and dPCR in a series of cancer patients showed high concordance. This analytical validation demonstrated that the InVisionFirst assay is highly sensitive, specific and robust, and meets analytical requirements for clinical applications.


Assuntos
Biópsia Líquida/métodos , Análise de Sequência de DNA/métodos , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , DNA Tumoral Circulante/sangue , Estudos de Coortes , Humanos , Mutação , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
PLoS One ; 13(3): e0194630, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29547634

RESUMO

INTRODUCTION: Detection and monitoring of circulating tumor DNA (ctDNA) is rapidly becoming a diagnostic, prognostic and predictive tool in cancer patient care. A growing number of gene targets have been identified as diagnostic or actionable, requiring the development of reliable technology that provides analysis of multiple genes in parallel. We have developed the InVision™ liquid biopsy platform which utilizes enhanced TAm-Seq™ (eTAm-Seq™) technology, an amplicon-based next generation sequencing method for the identification of clinically-relevant somatic alterations at low frequency in ctDNA across a panel of 35 cancer-related genes. MATERIALS AND METHODS: We present analytical validation of the eTAm-Seq technology across two laboratories to determine the reproducibility of mutation identification. We assess the quantitative performance of eTAm-Seq technology for analysis of single nucleotide variants in clinically-relevant genes as compared to digital PCR (dPCR), using both established DNA standards and novel full-process control material. RESULTS: The assay detected mutant alleles down to 0.02% AF, with high per-base specificity of 99.9997%. Across two laboratories, analysis of samples with optimal amount of DNA detected 94% mutations at 0.25%-0.33% allele fraction (AF), with 90% of mutations detected for samples with lower amounts of input DNA. CONCLUSIONS: These studies demonstrate that eTAm-Seq technology is a robust and reproducible technology for the identification and quantification of somatic mutations in circulating tumor DNA, and support its use in clinical applications for precision medicine.


Assuntos
Biomarcadores Tumorais/análise , Ácidos Nucleicos Livres/análise , Análise Mutacional de DNA/métodos , Mutação , Neoplasias/diagnóstico , Células Neoplásicas Circulantes/patologia , Adulto , Alelos , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/análise , DNA de Neoplasias/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Biópsia Líquida/métodos , Masculino , Células Neoplásicas Circulantes/química , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
PLoS Med ; 13(12): e1002198, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27997533

RESUMO

BACKGROUND: Circulating tumour DNA (ctDNA) carrying tumour-specific sequence alterations may provide a minimally invasive means to dynamically assess tumour burden and response to treatment in cancer patients. Somatic TP53 mutations are a defining feature of high-grade serous ovarian carcinoma (HGSOC). We tested whether these mutations could be used as personalised markers to monitor tumour burden and early changes as a predictor of response and time to progression (TTP). METHODS AND FINDINGS: We performed a retrospective analysis of serial plasma samples collected during routine clinical visits from 40 patients with HGSOC undergoing heterogeneous standard of care treatment. Patient-specific TP53 assays were developed for 31 unique mutations identified in formalin-fixed paraffin-embedded tumour DNA from these patients. These assays were used to quantify ctDNA in 318 plasma samples using microfluidic digital PCR. The TP53 mutant allele fraction (TP53MAF) was compared to serum CA-125, the current gold-standard response marker for HGSOC in blood, as well as to disease volume on computed tomography scans by volumetric analysis. Changes after one cycle of treatment were compared with TTP. The median TP53MAF prior to treatment in 51 relapsed treatment courses was 8% (interquartile range [IQR] 1.2%-22%) compared to 0.7% (IQR 0.3%-2.0%) for seven untreated newly diagnosed stage IIIC/IV patients. TP53MAF correlated with volumetric measurements (Pearson r = 0.59, p < 0.001), and this correlation improved when patients with ascites were excluded (r = 0.82). The ratio of TP53MAF to volume of disease was higher in relapsed patients (0.04% per cm3) than in untreated patients (0.0008% per cm3, p = 0.004). In nearly all relapsed patients with disease volume > 32 cm3, ctDNA was detected at ≥20 amplifiable copies per millilitre of plasma. In 49 treatment courses for relapsed disease, pre-treatment TP53MAF concentration, but not CA-125, was associated with TTP. Response to chemotherapy was seen earlier with ctDNA, with a median time to nadir of 37 d (IQR 28-54) compared with a median time to nadir of 84 d (IQR 42-116) for CA-125. In 32 relapsed treatment courses evaluable for response after one cycle of chemotherapy, a decrease in TP53MAF of >60% was an independent predictor of TTP in multivariable analysis (hazard ratio 0.22, 95% CI 0.07-0.67, p = 0.008). Conversely, a decrease in TP53MAF of ≤60% was associated with poor response and identified cases with TTP < 6 mo with 71% sensitivity (95% CI 42%-92%) and 88% specificity (95% CI 64%-99%). Specificity was improved when patients with recent drainage of ascites were excluded. Ascites drainage led to a reduction of TP53MAF concentration. The limitations of this study include retrospective design, small sample size, and heterogeneity of treatment within the cohort. CONCLUSIONS: In this retrospective study, we demonstrated that ctDNA is correlated with volume of disease at the start of treatment in women with HGSOC and that a decrease of ≤60% in TP53MAF after one cycle of chemotherapy was associated with shorter TTP. These results provide evidence that ctDNA has the potential to be a highly specific early molecular response marker in HGSOC and warrants further investigation in larger cohorts receiving uniform treatment.


Assuntos
Carcinoma/sangue , Carcinoma/genética , DNA de Neoplasias/sangue , DNA de Neoplasias/genética , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/genética , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Carcinoma/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Células Neoplásicas Circulantes/metabolismo , Neoplasias Ovarianas/metabolismo , Estudos Retrospectivos , Proteína Supressora de Tumor p53/metabolismo
16.
Nat Commun ; 6: 8760, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26530965

RESUMO

Circulating tumour DNA analysis can be used to track tumour burden and analyse cancer genomes non-invasively but the extent to which it represents metastatic heterogeneity is unknown. Here we follow a patient with metastatic ER-positive and HER2-positive breast cancer receiving two lines of targeted therapy over 3 years. We characterize genomic architecture and infer clonal evolution in eight tumour biopsies and nine plasma samples collected over 1,193 days of clinical follow-up using exome and targeted amplicon sequencing. Mutation levels in the plasma samples reflect the clonal hierarchy inferred from sequencing of tumour biopsies. Serial changes in circulating levels of sub-clonal private mutations correlate with different treatment responses between metastatic sites. This comparison of biopsy and plasma samples in a single patient with metastatic breast cancer shows that circulating tumour DNA can allow real-time sampling of multifocal clonal evolution.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Evolução Clonal/genética , DNA de Neoplasias/genética , Neoplasias Hepáticas/genética , Neoplasias Pulmonares/genética , Neoplasias da Coluna Vertebral/genética , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Teorema de Bayes , Neoplasias Encefálicas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Estudos de Casos e Controles , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Feminino , Humanos , Lapatinib , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Mutação , Metástase Neoplásica , Quinazolinas/administração & dosagem , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Análise de Sequência de DNA , Neoplasias da Coluna Vertebral/secundário , Tamoxifeno/administração & dosagem , Trastuzumab/administração & dosagem , Gencitabina
17.
PLoS Med ; 12(2): e1001789, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25710373

RESUMO

BACKGROUND: The major clinical challenge in the treatment of high-grade serous ovarian cancer (HGSOC) is the development of progressive resistance to platinum-based chemotherapy. The objective of this study was to determine whether intra-tumour genetic heterogeneity resulting from clonal evolution and the emergence of subclonal tumour populations in HGSOC was associated with the development of resistant disease. METHODS AND FINDINGS: Evolutionary inference and phylogenetic quantification of heterogeneity was performed using the MEDICC algorithm on high-resolution whole genome copy number profiles and selected genome-wide sequencing of 135 spatially and temporally separated samples from 14 patients with HGSOC who received platinum-based chemotherapy. Samples were obtained from the clinical CTCR-OV03/04 studies, and patients were enrolled between 20 July 2007 and 22 October 2009. Median follow-up of the cohort was 31 mo (interquartile range 22-46 mo), censored after 26 October 2013. Outcome measures were overall survival (OS) and progression-free survival (PFS). There were marked differences in the degree of clonal expansion (CE) between patients (median 0.74, interquartile range 0.66-1.15), and dichotimization by median CE showed worse survival in CE-high cases (PFS 12.7 versus 10.1 mo, p = 0.009; OS 42.6 versus 23.5 mo, p = 0.003). Bootstrap analysis with resampling showed that the 95% confidence intervals for the hazard ratios for PFS and OS in the CE-high group were greater than 1.0. These data support a relationship between heterogeneity and survival but do not precisely determine its effect size. Relapsed tissue was available for two patients in the CE-high group, and phylogenetic analysis showed that the prevalent clonal population at clinical recurrence arose from early divergence events. A subclonal population marked by a NF1 deletion showed a progressive increase in tumour allele fraction during chemotherapy. CONCLUSIONS: This study demonstrates that quantitative measures of intra-tumour heterogeneity may have predictive value for survival after chemotherapy treatment in HGSOC. Subclonal tumour populations are present in pre-treatment biopsies in HGSOC and can undergo expansion during chemotherapy, causing clinical relapse.


Assuntos
Alelos , DNA de Neoplasias , Resistencia a Medicamentos Antineoplásicos , Variação Genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Filogenia , Platina/uso terapêutico , Idoso , Algoritmos , Carcinoma Epitelial do Ovário , Intervalo Livre de Doença , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/mortalidade , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidade
18.
Nature ; 497(7447): 108-12, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23563269

RESUMO

Cancers acquire resistance to systemic treatment as a result of clonal evolution and selection. Repeat biopsies to study genomic evolution as a result of therapy are difficult, invasive and may be confounded by intra-tumour heterogeneity. Recent studies have shown that genomic alterations in solid cancers can be characterized by massively parallel sequencing of circulating cell-free tumour DNA released from cancer cells into plasma, representing a non-invasive liquid biopsy. Here we report sequencing of cancer exomes in serial plasma samples to track genomic evolution of metastatic cancers in response to therapy. Six patients with advanced breast, ovarian and lung cancers were followed over 1-2 years. For each case, exome sequencing was performed on 2-5 plasma samples (19 in total) spanning multiple courses of treatment, at selected time points when the allele fraction of tumour mutations in plasma was high, allowing improved sensitivity. For two cases, synchronous biopsies were also analysed, confirming genome-wide representation of the tumour genome in plasma. Quantification of allele fractions in plasma identified increased representation of mutant alleles in association with emergence of therapy resistance. These included an activating mutation in PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) following treatment with paclitaxel; a truncating mutation in RB1 (retinoblastoma 1) following treatment with cisplatin; a truncating mutation in MED1 (mediator complex subunit 1) following treatment with tamoxifen and trastuzumab, and following subsequent treatment with lapatinib, a splicing mutation in GAS6 (growth arrest-specific 6) in the same patient; and a resistance-conferring mutation in EGFR (epidermal growth factor receptor; T790M) following treatment with gefitinib. These results establish proof of principle that exome-wide analysis of circulating tumour DNA could complement current invasive biopsy approaches to identify mutations associated with acquired drug resistance in advanced cancers. Serial analysis of cancer genomes in plasma constitutes a new paradigm for the study of clonal evolution in human cancers.


Assuntos
Antineoplásicos/uso terapêutico , DNA de Neoplasias/análise , DNA de Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Plasma/química , Alelos , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Classe I de Fosfatidilinositol 3-Quinases , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Evolução Molecular , Exoma/genética , Feminino , Genoma Humano/genética , Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Subunidade 1 do Complexo Mediador/genética , Neoplasias/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/genética , Proteína do Retinoblastoma/genética
19.
N Engl J Med ; 368(13): 1199-209, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23484797

RESUMO

BACKGROUND: The management of metastatic breast cancer requires monitoring of the tumor burden to determine the response to treatment, and improved biomarkers are needed. Biomarkers such as cancer antigen 15-3 (CA 15-3) and circulating tumor cells have been widely studied. However, circulating cell-free DNA carrying tumor-specific alterations (circulating tumor DNA) has not been extensively investigated or compared with other circulating biomarkers in breast cancer. METHODS: We compared the radiographic imaging of tumors with the assay of circulating tumor DNA, CA 15-3, and circulating tumor cells in 30 women with metastatic breast cancer who were receiving systemic therapy. We used targeted or whole-genome sequencing to identify somatic genomic alterations and designed personalized assays to quantify circulating tumor DNA in serially collected plasma specimens. CA 15-3 levels and numbers of circulating tumor cells were measured at identical time points. RESULTS: Circulating tumor DNA was successfully detected in 29 of the 30 women (97%) in whom somatic genomic alterations were identified; CA 15-3 and circulating tumor cells were detected in 21 of 27 women (78%) and 26 of 30 women (87%), respectively. Circulating tumor DNA levels showed a greater dynamic range, and greater correlation with changes in tumor burden, than did CA 15-3 or circulating tumor cells. Among the measures tested, circulating tumor DNA provided the earliest measure of treatment response in 10 of 19 women (53%). CONCLUSIONS: This proof-of-concept analysis showed that circulating tumor DNA is an informative, inherently specific, and highly sensitive biomarker of metastatic breast cancer. (Funded by Cancer Research UK and others.).


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/secundário , DNA de Neoplasias/sangue , Mucina-1/sangue , Metástase Neoplásica/diagnóstico , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Mutação , Metástase Neoplásica/diagnóstico por imagem , Metástase Neoplásica/genética , Prognóstico , Radiografia , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Carga Tumoral
20.
Sci Transl Med ; 4(136): 136ra68, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22649089

RESUMO

Plasma of cancer patients contains cell-free tumor DNA that carries information on tumor mutations and tumor burden. Individual mutations have been probed using allele-specific assays, but sequencing of entire genes to detect cancer mutations in circulating DNA has not been demonstrated. We developed a method for tagged-amplicon deep sequencing (TAm-Seq) and screened 5995 genomic bases for low-frequency mutations. Using this method, we identified cancer mutations present in circulating DNA at allele frequencies as low as 2%, with sensitivity and specificity of >97%. We identified mutations throughout the tumor suppressor gene TP53 in circulating DNA from 46 plasma samples of advanced ovarian cancer patients. We demonstrated use of TAm-Seq to noninvasively identify the origin of metastatic relapse in a patient with multiple primary tumors. In another case, we identified in plasma an EGFR mutation not found in an initial ovarian biopsy. We further used TAm-Seq to monitor tumor dynamics, and tracked 10 concomitant mutations in plasma of a metastatic breast cancer patient over 16 months. This low-cost, high-throughput method could facilitate analysis of circulating DNA as a noninvasive "liquid biopsy" for personalized cancer genomics.


Assuntos
DNA/sangue , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/sangue , Neoplasias/diagnóstico , Humanos , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...