Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteomics ; 23(2): e2200253, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35969374

RESUMO

The recent and sudden outbreak of monkeypox in numerous non-endemic countries requires expanding its surveillance immediately and understanding its origin and spread. As learned from the COVID-19 pandemic, appropriate detection techniques are crucial to achieving such a goal. Mass spectrometry has the advantages of a rapid response, low analytical interferences, better precision, and easier multiplexing to detect various pathogens and their variants. In this proteomic dataset, we report experimental data on the proteome of the monkeypox virus (MPXV) recorded by state-of-the-art shotgun proteomics, including data-dependent and data-independent acquisition for comprehensive coverage. We highlighted 152 viral proteins, corresponding to an overall proteome coverage of 79.5 %. Among the 1371 viral peptides detected, 35 peptides with the most intense signals in mass spectrometry were selected, representing a subset of 13 viral proteins. Their relevance as potential candidate markers for virus detection by targeted mass spectrometry is discussed. This report should assist the rapid development of mass spectrometry-based tests to detect a pathogen of increasing concern.


Assuntos
Monkeypox virus , Mpox , Humanos , Espectrometria de Massas/métodos , Monkeypox virus/isolamento & purificação , Peptídeos/análise , Proteoma , Proteômica/métodos , Proteínas Virais/química , Mpox/diagnóstico
2.
MAbs ; 14(1): 2076775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35593235

RESUMO

Here, we report the molecular engineering of nanobodies that bind with picomolar affinity to both SARS-CoV-1 and SARS-CoV-2 receptor-binding domains (RBD) and are highly neutralizing. We applied deep mutational engineering to VHH72, a nanobody initially specific for SARS-CoV-1 RBD with little cross-reactivity to SARS-CoV-2 antigen. We first identified all the individual VHH substitutions that increase binding to SARS-CoV-2 RBD and then screened highly focused combinatorial libraries to isolate engineered nanobodies with improved properties. The corresponding VHH-Fc molecules show high affinities for SARS-CoV-2 antigens from various emerging variants and SARS-CoV-1, block the interaction between ACE2 and RBD, and neutralize the virus with high efficiency. Its rare specificity across sarbecovirus relies on its peculiar epitope outside the immunodominant regions. The engineered nanobodies share a common motif of three amino acids, which contribute to the broad specificity of recognition. Our results show that deep mutational engineering is a very powerful method, especially to rapidly adapt existing antibodies to new variants of pathogens.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Anticorpos Neutralizantes , Anticorpos Antivirais , Deriva e Deslocamento Antigênicos , Humanos , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
3.
Anal Bioanal Chem ; 413(29): 7265-7275, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34013402

RESUMO

COVID-19 is the most disturbing pandemic of the past hundred years. Its causative agent, the SARS-CoV-2 virus, has been the subject of an unprecedented investigation to characterize its molecular structure and intimate functioning. While markers for its detection have been proposed and several diagnostic methodologies developed, its propensity to evolve and evade diagnostic tools and the immune response is of great concern. The recent spread of new variants with increased infectivity requires even more attention. Here, we document how shotgun proteomics can be useful for rapidly monitoring the evolution of the SARS-CoV-2 virus. We evaluated the heterogeneity of purified SARS-CoV-2 virus obtained after culturing in the Vero E6 cell line. We found that cell culture induces significant changes that are translated at the protein level, such changes being detectable by tandem mass spectrometry. Production of viral particles requires careful quality control which can be easily performed by shotgun proteomics. Although considered relatively stable so far, the SARS-CoV-2 genome turns out to be prone to frequent variations. Therefore, the sequencing of SARS-CoV-2 variants from patients reporting only the consensus genome after its amplification would deserve more attention and could benefit from more in-depth analysis of low level but crystal-clear signals, as well as complementary and rapid analysis by shotgun proteomics.


Assuntos
Genoma Viral , Proteômica/métodos , SARS-CoV-2/isolamento & purificação , Sequência de Aminoácidos , Técnicas de Cultura de Células , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Espectrometria de Massas em Tandem/métodos , Proteínas Virais/química , Virulência
4.
J Proteome Res ; 20(2): 1434-1443, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33497234

RESUMO

Alternative methods to RT-PCR for SARS-CoV-2 detection are investigated to provide complementary data on viral proteins, increase the number of tests performed, or identify false positive/negative results. Here, we have developed a simple mass spectrometry assay for SARS-CoV-2 in nasopharyngeal swab samples using common laboratory reagents. The method employs high sensitivity and selectivity targeted mass spectrometry detection, monitoring nine constitutive peptides representative of the three main viral proteins and a straightforward pellet digestion protocol for convenient routine applications. Absolute quantification of N, M, and S proteins was achieved by addition of isotope-labeled versions of best peptides. Limit of detection, recovery, precision, and linearity were thoroughly evaluated in four representative viral transport media (VTM) containing distinct total protein content. The protocol was sensitive in all swab media with limit of detection determined at 2 × 103 pfu/mL, corresponding to as low as 30 pfu injected into the LC-MS/MS system. When tested on VTM-stored nasopharyngeal swab samples from positive and control patients, sensitivity was similar to or better than rapid immunoassay dipsticks, revealing a corresponding RT-PCR detection threshold at Ct ∼ 24. The study represents the first thorough evaluation of sensitivity and robustness of targeted mass spectrometry in nasal swabs, constituting a promising SARS-CoV-2 antigen assay for the first-line diagnosis of COVID-19 and compatible with the constraints of clinical settings. The raw files generated in this study can be found on PASSEL (Peptide Atlas) under data set identifier PASS01646.


Assuntos
COVID-19/diagnóstico , Cromatografia Líquida/métodos , Nasofaringe/virologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Espectrometria de Massas em Tandem/métodos , COVID-19/virologia , Meios de Cultura , Humanos , Nucleocapsídeo/metabolismo , Proteômica/métodos , Reprodutibilidade dos Testes , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos , Proteínas Virais/metabolismo
5.
Front Immunol ; 11: 586595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250896

RESUMO

The humoral responses of Ebola virus (EBOV) survivors mainly target the surface glycoprotein GP, and anti-GP neutralizing antibodies have been associated with protection against EBOV infection. In order to elicit protective neutralizing antibodies through vaccination a native-like conformation of the antigen is required. We therefore engineered and expressed in CHO cells several GP variants from EBOV (species Zaire ebolavirus, Mayinga variant), including a soluble GP ΔTM, a mucin-like domain-deleted GP ΔTM-ΔMUC, as well as two GP ΔTM-ΔMUC variants with C-terminal trimerization motifs in order to favor their native trimeric conformation. Inclusion of the trimerization motifs resulted in proteins mimicking GP metastable trimer and showing increased stability. The mucin-like domain appeared not to be critical for the retention of the native conformation of the GP protein, and its removal unmasked several neutralizing epitopes, especially in the trimers. The soluble GP variants inhibited mAbs neutralizing activity in a pseudotype transduction assay, further confirming the proteins' structural integrity. Interestingly, the trimeric GPs, a native-like GP complex, showed stronger affinity for antibodies raised by natural infection in EBOV disease survivors rather than for antibodies raised in volunteers that received the ChAd3-EBOZ vaccine. These results support our hypothesis that neutralizing antibodies are preferentially induced when using a native-like conformation of the GP antigen. The soluble trimeric recombinant GP proteins we developed represent a novel and promising strategy to develop prophylactic vaccines against EBOV and other filoviruses.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra Ebola/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Células CHO , Cricetulus , Humanos , Camundongos
6.
Emerg Microbes Infect ; 9(1): 1712-1721, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32619390

RESUMO

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has resulted in a pandemic and is continuing to spread rapidly around the globe. No effective vaccine is currently available to prevent COVID-19, and intense efforts are being invested worldwide into vaccine development. In this context, all technology platforms must overcome several challenges resulting from the use of an incompletely characterized new virus. These include finding the right conditions for virus amplification for the development of vaccines based on inactivated or attenuated whole viral particles. Here, we describe a shotgun tandem mass spectrometry workflow, the data produced can be used to guide optimization of the conditions for viral amplification. In parallel, we analysed the changes occurring in the host cell proteome following SARS-CoV-2 infection to glean information on the biological processes modulated by the virus that could be further explored as potential drug targets to deal with the pandemic.


Assuntos
Antígenos Virais/biossíntese , Betacoronavirus/imunologia , Proteômica/métodos , Vacinas Virais/imunologia , Vírion/imunologia , Animais , Antígenos Virais/imunologia , Chlorocebus aethiops , SARS-CoV-2 , Espectrometria de Massas em Tandem , Células Vero
7.
J Proteome Res ; 19(11): 4407-4416, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32697082

RESUMO

Rapid but yet sensitive, specific, and high-throughput detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples is key to diagnose infected people and to better control the spread of the virus. Alternative methodologies to PCR and immunodiagnostics that would not require specific reagents are worthy to investigate not only for fighting the COVID-19 pandemic but also to detect other emergent pathogenic threats. Here, we propose the use of tandem mass spectrometry to detect SARS-CoV-2 marker peptides in nasopharyngeal swabs. We documented that the signal from the microbiota present in such samples is low and can be overlooked when interpreting shotgun proteomic data acquired on a restricted window of the peptidome landscape. In this proof-of-concept study, simili nasopharyngeal swabs spiked with different quantities of purified SARS-CoV-2 viral material were used to develop a nanoLC-MS/MS acquisition method, which was then successfully applied on COVID-19 clinical samples. We argue that peptides ADETQALPQR and GFYAQGSR from the nucleocapsid protein are of utmost interest as their signal is intense and their elution can be obtained within a 3 min window in the tested conditions. These results pave the way for the development of time-efficient viral diagnostic tests based on mass spectrometry.


Assuntos
Betacoronavirus/química , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus , Nasofaringe/virologia , Pandemias , Pneumonia Viral , Espectrometria de Massas em Tandem/métodos , COVID-19 , Teste para COVID-19 , Cromatografia Líquida , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus , Humanos , Proteínas do Nucleocapsídeo/química , Fosfoproteínas , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , SARS-CoV-2
8.
Proteomics ; 20(14): e2000107, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32462744

RESUMO

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a crucial tool for fighting the COVID-19 pandemic. This dataset brief presents the exploration of a shotgun proteomics dataset acquired on SARS-CoV-2 infected Vero cells. Proteins from inactivated virus samples were extracted, digested with trypsin, and the resulting peptides were identified by data-dependent acquisition tandem mass spectrometry. The 101 peptides reporting for six viral proteins were specifically analyzed in terms of their analytical characteristics, species specificity and conservation, and their proneness to structural modifications. Based on these results, a shortlist of 14 peptides from the N, S, and M main structural proteins that could be used for targeted mass-spectrometry method development and diagnostic of the new SARS-CoV-2 is proposed and the best candidates are commented.


Assuntos
Betacoronavirus/química , Infecções por Coronavirus/virologia , Peptídeos/análise , Pneumonia Viral/virologia , Proteínas Virais/análise , Sequência de Aminoácidos , Animais , Betacoronavirus/isolamento & purificação , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/diagnóstico , Humanos , Pandemias , Pneumonia Viral/diagnóstico , Proteômica , SARS-CoV-2 , Espectrometria de Massas em Tandem , Células Vero , Proteínas Estruturais Virais/análise
9.
J Virol ; 83(7): 3228-37, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19153226

RESUMO

The cell entry and humoral immune response of the human pathogen Lassa virus (LV), a biosafety level 4 (BSL4) Old World arenavirus, are not well characterized. LV pseudoparticles (LVpp) are a surrogate model system that has been used to decipher factors and routes involved in LV cell entry under BSL2 conditions. Here, we describe LVpp, which are highly infectious, with titers approaching those obtained with pseudoparticles displaying G protein of vesicular stomatitis virus and their the use for the characterization of LV cell entry and neutralization. Upon cell attachment, LVpp utilize endocytic vesicles for cell entry as described for many pH-dependent viruses. However, the fusion of the LV glycoproteins is activated at unusually low pH values, with optimal fusion occurring between pH 4.5 and 3, a pH range at which fusion characteristics of viral glycoproteins have so far remained largely unexplored. Consistent with a shifted pH optimum for fusion activation, we found wild-type LV and LVpp to display a remarkable resistance to exposure to low pH. Finally, LVpp allow the fast and quantifiable detection of neutralizing antibodies in human and animal sera and will thus facilitate the study of the humoral immune response in LV infections.


Assuntos
Vírus Lassa/imunologia , Vírus Lassa/fisiologia , Virossomos/imunologia , Internalização do Vírus , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , Endocitose , Endossomos/virologia , Humanos , Concentração de Íons de Hidrogênio , Testes de Neutralização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...