Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38821673

RESUMO

Diabetes mellitus is a complex metabolic disorder resulting from the interplay of environmental, genetic, and epigenetic factors that increase the risk of cancer development. However, it is unclear whether the increased cancer risk is due to poor glycemic control or the use of some antidiabetic medications. Therefore, we investigated the genetic and epigenetic changes in somatic cells in a mouse model of diabetes and studied whether multiple exposures to the antidiabetic medication dapagliflozin influence these changes. We also elucidated the mechanism(s) of these ameliorations. The micronucleus test and modified comet assay were used to investigate bone marrow DNA damage and methylation changes. These assays revealed that dapagliflozin is non-genotoxic in the tested regimen, and oxidative DNA damage and hypermethylation were significantly higher in diabetic mice. Spectrophotometry also evaluated oxidative DNA damage and global DNA methylation, revealing similar significant alterations induced by diabetes. Conversely, the dapagliflozin-treated diabetic animals significantly reduced these changes. The expression of some genes involved in DNA repair and DNA methylation was disrupted considerably in the somatic cells of diabetic animals. In contrast, dapagliflozin treatment significantly restored these disruptions and enhanced DNA repair. The simultaneous effects of decreased oxidative DNA damage and hypermethylation levels suggest that dapagliflozin can be used as a safe antidiabetic drug to reduce DNA damage and hypermethylation in diabetes, demonstrating its usefulness in patients with diabetes to control hyperglycemia and decrease the development of its subsequent complications.


Assuntos
Compostos Benzidrílicos , Dano ao DNA , Metilação de DNA , Diabetes Mellitus Experimental , Glucosídeos , Estresse Oxidativo , Animais , Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Metilação de DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Hipoglicemiantes/farmacologia , Testes para Micronúcleos , Reparo do DNA/efeitos dos fármacos , Ensaio Cometa
2.
Chem Biol Interact ; 387: 110797, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37949422

RESUMO

In light of the current industrial evolution, exposure to cadmium has become a significant public health concern. Cadmium accumulates in the renal tubular cells and causes nephrotoxicity largely through disruption of the redox homeostasis, induction of inflammation, and suppression of the histone deacetylase SIRT1 expression. The current work aimed at exploring the protective capability of bergenin, a naturally-occurring methyl gallic acid derivative, against the cadmium-evoked nephrotoxicity. Male Wistar rats were treated either with cadmium alone or with cadmium and bergenin for a 7-day experimental period followed by collection of kidney and blood specimens that were subjected to biochemical, molecular, and histological investigations. The results revealed the ability of bergenin to improve the renal functions in the cadmium-intoxicated rats as evidenced by increased glomerular filtration rate, and decreased serum creatinine and blood urea nitrogen. Equally important, bergenin reduced the renal tissue injury and enhanced its redox homeostasis as indicated by decreased protein expression of the kidney injury marker KIM-1, reduced lipid peroxidation, and improved antioxidant potential and histopathological picture of the renal tissues. Mechanistically, bergenin reduced the renal tissue cadmium content, markedly up-regulated protein expression of SIRT1 that regulates inflammation and the redox status of the renal tissues. Additionally, it improved the expression of the major antioxidant transcription factor Nrf2 and its responsive gene products heoxygenase-1 and NAD(P)H quinone dehydrogenase 1 in the cadmium-intoxicated rats. In the same context, bergenin down-regulated the acetylation and the nuclear translocation of the inflammatory transcription factor NF-κB and reduced levels of its responsive gene products TNF-α and IL-1ß, as well as the activity of the inflammatory cell infiltration biomarker myeloperoxidase. Collectively, the current study underscores the ameliorating activity of bergenin against the cadmium-evoked nephrotoxicity and highlights modulation of SIRT1, Nrf2, and NF-κB signaling as potential underlining molecular mechanisms.


Assuntos
Benzopiranos , Cádmio , Rim , Animais , Masculino , Ratos , Cádmio/toxicidade , Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Ratos Wistar , Transdução de Sinais , Sirtuína 1/metabolismo , Benzopiranos/farmacologia
3.
Int J Biol Macromol ; 253(Pt 5): 127055, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37758106

RESUMO

Gene editing technologies (GETs) could induce gene knockdown or gene knockout for biomedical applications. The clinical success of gene silence by RNAi therapies pays attention to other GETs as therapeutic approaches. This review aims to highlight GETs, categories, mechanisms, challenges, current use, and prospective applications. The different academic search engines, electronic databases, and bibliographies of selected articles were used in the preparation of this review with a focus on the fundamental considerations. The present results revealed that, among GETs, CRISPR/Cas9 has higher editing efficiency and targeting specificity compared to other GETs to insert, delete, modify, or replace the gene at a specific location in the host genome. Therefore, CRISPR/Cas9 is talented in the production of molecular, tissue, cell, and organ therapies. Consequently, GETs could be used in the discovery of innovative therapeutics for genetic diseases, pandemics, cancer, hopeless diseases, and organ failure. Specifically, GETs have been used to produce gene-modified animals to spare human organ failure. Genetically modified pigs are used in clinical trials as a source of heart, liver, kidneys, and lungs for xenotransplantation (XT) in humans. Viral, non-viral, and hybrid vectors have been utilized for the delivery of GETs with some limitations. Therefore, extracellular vesicles (EVs) are proposed as intelligent and future cargoes for GETs delivery in clinical applications. This study concluded that GETs are promising for the production of molecular, cellular, and organ therapies. The use of GETs as XT is still in the early stage as well and they have ethical and biosafety issues.


Assuntos
Edição de Genes , Transplante de Órgãos , Animais , Humanos , Suínos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Técnicas de Transferência de Genes , Terapia Genética
4.
J Biochem Mol Toxicol ; 37(12): e23496, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37555509

RESUMO

Compared to the general population, patients with arthritis have a higher risk of fertility abnormalities, which have deleterious effects on both reproductive function and pregnancy outcomes, especially in patients wishing to conceive. These may be due to the disease itself or those of drug therapies. Despite the increasing use of rituximab in arthritis, limited data are available on its potential to induce aneuploidy in germ cells. Therefore, the aim of the current investigation was to determine if repeated treatment with rituximab affects the incidence of aneuploidy and redox imbalance in arthritic mouse sperm. Mice were treated with 250 mg/kg rituximab once weakly for 3 weeks, and then sperm were sampled 22 days after the last dose of rituximab. Fluorescence in situ hybridization assay with chromosome-specific DNA probes was used to evaluate the disomic/diploid sperm. Our results showed that rituximab had no aneuploidogenic effect on the meiotic stage of spermatogenesis. Conversely, arthritis induced a significantly high frequency of disomy, and treatment of arthritic mice with rituximab reduced the increased levels of disomic sperm. The occurrence of total diploidy was not significantly different in all groups. Reduced glutathione and8-hydroxydeoxyguanosine, markers of oxidative stress were significantly altered in arthritic animals, while rituximab treatment restored these changes. Additionally, arthritis severity was reduced after rituximab treatment. We conclude that rituximab may efficiently alleviate the arthritis-induced effects on male meiosis and avert the higher risk of abnormal reproductive outcomes. Therefore, treating arthritic patients with rituximab may efficiently inhibit the transmission of genetic anomalies induced by arthritis to future generations.


Assuntos
Artrite Reumatoide , Sêmen , Humanos , Masculino , Camundongos , Animais , Rituximab/farmacologia , Rituximab/uso terapêutico , Hibridização in Situ Fluorescente/métodos , Camundongos Endogâmicos DBA , Espermatozoides , Aneuploidia , Artrite Reumatoide/tratamento farmacológico
5.
Mol Biotechnol ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578574

RESUMO

This study aims to highlight the potential use of cTNAs in therapeutic applications. The COVID-19 pandemic has led to significant use of coding therapeutic nucleic acids (cTNAs) in terms of DNA and mRNA in the development of vaccines. The use of cTNAs resulted in a paradigm shift in the therapeutic field. However, the injection of DNA or mRNA into the human body transforms cells into biological factories to produce the necessary proteins. Despite the success of cTNAs in the production of corona vaccines, they have several limitations such as instability, inability to cross biomembranes, immunogenicity, and the possibility of integration into the human genome. The chemical modification and utilization of smart drug delivery cargoes resolve cTNAs therapeutic problems. The success of cTNAs in corona vaccine production provides perspective for the eradication of influenza viruses, Zika virus, HIV, respiratory syncytial virus, Ebola virus, malaria, and future pandemics by quick vaccine design. Moreover, the progress cTNAs technology is promising for the development of therapy for genetic disease, cancer therapy, and currently incurable diseases.

6.
Drug Dev Res ; 84(7): 1453-1467, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37519092

RESUMO

Breast cancer represents a life-threatening problem globally. The major challenge in the clinical setting is the management of cancer resistance and metastasis. Hybrid therapy can affect several cellular targets involved in carcinogenesis with a lessening of adverse effects. Therefore, the current study aims to assemble, and optimize a hybrid of gefitinib (GFT) and simvastatin (SIM)-loaded nanostructured lipid carrier (GFT/SIM-NLC) to combat metastatic and drug-resistant breast cancer. GFT/SIM-NLC cargos were prepared using design of experiments to investigate the impact of poloxamer-188 and fatty acids concentrations on the physicochemical and pharmaceutical behavior properties of NLC. Additionally, the biosafety of the prepared GFT/SIM-NLC was studied using a fresh blood sample. Afterward, the optimized formulation was subjected to an MTT assay to study the cytotoxic activity of GFT/SIM-NLC compared to free GFT/SIM using an MCF-7 cell line as a surrogate model for breast cancer. The present results revealed that the particle size of the prepared NLC ranged from (209 to 410 nm) with a negative zeta potential value ranging from (-17.2 to -23.9 mV). Moreover, the optimized GFT/SIM-NLC formulation showed favorable physicochemical properties and promising lymphatic delivery cargos. A biosafety study indicates that the prepared NLC has a gentle effect on erythrocyte hemolysis. Cytotoxicity studies revealed that GFT/SIM-NLC enhanced the killing of the MCF-7 cell line compared to free GFT/SIM. This study concluded that the hybrid therapy of GFT/SIM-NLC is a potential approach to combat metastatic and drug-resistant breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Portadores de Fármacos/química , Gefitinibe , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Reposicionamento de Medicamentos , Lipídeos , Tamanho da Partícula
7.
Saudi Pharm J ; 31(3): 370-381, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37026046

RESUMO

Purpose: The clinical study of fulminant hepatic failure is challenging due to its high mortality and relative rarity, necessitating reliance on pre-clinical models to gain insight into its pathophysiology and develop potential therapies. Methods and Results: In our study, the combination of the commonly used solvent dimethyl sulfoxide to the current-day model of lipopolysaccharide/d-galactosamine-caused fulminant hepatic failure was found to cause significantly greater hepatic damage, as indicated by alanine aminotransferase level. The effect was dose-dependent, with the maximum increase in alanine aminotransferase observed following 200 µl/kg dimethyl sulfoxide co-administration. Co-administration of 200 µl/kg dimethyl sulfoxide also remarkably increased histopathological changes induced by lipopolysaccharide/d-galactosamine. Importantly, alanine aminotransferase levels and survival rate in the 200 µl/kg dimethyl sulfoxide co-administration groups were both greater than those in the classical lipopolysaccharide/d-galactosamine model. We found that dimethyl sulfoxide co-administration aggravated lipopolysaccharide/d-galactosamine-caused liver damage by stimulating inflammatory signaling, as indicated by tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) levels. Further, nuclear factor kappa B (NF-kB) and transcription factor activator 1 (STAT1) were upregulated, as was neutrophil recruitment, indicated by myeloperoxidase activity. Hepatocyte apoptosis was also increased, and greater nitro-oxidative stress was noted, as determined based on nitric oxide, malondialdehyde, and glutathione levels. Conclusion: Co-treatment with low doses of dimethyl sulfoxide enhanced the lipopolysaccharide/d-galactosamine-caused hepatic failure in animals, with higher toxicity and greater survival rates. The current findings also highlight the potential danger of using dimethyl sulfoxide as a solvent in experiments involving the hepatic immune system, suggesting that the new lipopolysaccharide/d-galactosamine/dimethyl sulfoxide model described herein could be used for pharmacological screening with the goal to better understand hepatic failure and evaluate treatment approaches.

8.
J Membr Biol ; 256(3): 199-222, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36752839

RESUMO

Lymphatic drug targeting is an effective approach for targeting immunomodulators, and chemotherapeutic drugs at a specific organ or cellular location. The cellular, paracellular, and dendritic cell trafficking machinery are involved in the lymphatic transport of therapeutic agents. The engineering of triggered and hybrid lymphatic drug delivery systems (LDDS) is a promising strategy to fight cancer metastasis and microbial pandemics. Hybrid lymphatic drug delivery systems can be tailored and developed by grafting the conventional LDDS with biological agents. Thus, hybrid LDDS could collect the benefits of conventional and biological delivery systems. Moreover, the fabrication of triggered LDDS increases drug accumulation in the lymphatic system in the response to an internal stimulus such as pH, and redox status or external such as magnetic field, temperature, and light. Stimuli-responsive LDD systems prevent premature release of payload and mediate selective drug biodistribution. This improves therapeutic impact and reduces the systemic side effect of anticancer, immunomodulatory, and antimicrobial therapeutics. This review highlights the challenges and future horizons of nanoscaled-triggered LDDS and their influence on the lymphatic trafficking of therapeutic molecules.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Distribuição Tecidual , Temperatura , Nanopartículas/química
9.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615641

RESUMO

Gefitinib (GEF) is utilized in clinical settings for the treatment of metastatic lung cancer. However, premature drug release from nanoparticles in vivo increases the exposure of systemic organs to GEF. Herein, nanostructured lipid carriers (NLC) were utilized not only to avoid premature drug release but also due to their inherent lymphatic tropism. Therefore, the present study aimed to develop a GEF-NLC as a lymphatic drug delivery system with low drug release. Design of experiments was utilized to develop a stable GEF-NLC as a lymphatic drug delivery system for the treatment of metastatic lung cancer. The in vitro drug release of GEF from the prepared GEF-NLC formulations was studied to select the optimum formulation. MTT assay was utilized to study the cytotoxic activity of GEF-NLC compared to free GEF. The optimized GEF-NLC formulation showed favorable physicochemical properties: <300 nm PS, <0.2 PDI, <−20 ZP values with >90% entrapment efficiency. Interestingly, the prepared formulation was able to retain GEF with only ≈57% drug release within 24 h. Furthermore, GEF-NLC reduced the sudden exposure of cultured cells to GEF and produced the required cytotoxic effect after 48 and 72 h incubation time. Consequently, optimized formulation offers a promising approach to improve GEF's therapeutic outcomes with reduced systemic toxicity in treating metastatic lung cancer.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Nanoestruturas , Humanos , Portadores de Fármacos , Gefitinibe , Lipídeos , Sistemas de Liberação de Medicamentos , Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Tamanho da Partícula
10.
Colloids Surf B Biointerfaces ; 223: 113148, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36706479

RESUMO

Lymphatic drug delivery (LDD) is an attractive option for the prevention and treatment of cancer metastasis. This study aims to develop TPGS decorated nanostructure lipid carrier gefitinib loaded (TPGS-NLC-GEF). Biocompatibility and cytotoxicity were studied using erythrocytes and A549 cell lines. Furthermore, cellular uptake of the prepared TPGS-NLC was studied using 5-carboxyfluorescein (5-CF). Pharmacokinetic, biodistribution, and chylomicron-block flow studies were performed using male Wister Albino rats to investigate the influence of TPGS-NLC on plasma concentration-time profile, organ deposition, and LDD of GEF. The present results indicated that the prepared TPGS-NLC and TPGS-NLC-GEF formulation had a particle size range of 268 and 288 nm with a negative zeta-potential value of - 29.3 and - 26.5 mV, respectively. The in-vitro release showed burst drug release followed by sustained release. In addition, the biosafety in the term of the hemocompatibility study showed that the prepared formulation was safe at the therapeutic level. Additionally, an in-vitro cytotoxicity study showed that the TPGS-NLC was able to enhance the activity of GEF against the A549 cell line. The cellular uptake study showed the ability of TPGS-NLC to enhance 5-CF internalization by 12.6-fold compared to the 5-CF solution. Furthermore, the in-vivo study showed that TPGS-NLC was able to enhance GEF bioavailability (1.5-fold) through lymphatic system which was confirmed via the indirect chylomicron-block flow method. The tissue distribution study showed the ability of lipid nanoparticles to enhance lung drug deposition by 5.8-fold compared to a GEF suspension. This study concluded that GEF-NLC-GEF is an encouraging approach for the treatment of metastatic lung cancer through lymphatic delivery, enhanced bioavailability, and reduced systemic toxicity.


Assuntos
Portadores de Fármacos , Nanopartículas , Masculino , Disponibilidade Biológica , Quilomícrons , Portadores de Fármacos/química , Gefitinibe , Nanopartículas/química , Tamanho da Partícula , Distribuição Tecidual , Ratos , Animais
11.
Int J Nanomedicine ; 17: 3287-3311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924261

RESUMO

Purpose: The present study aimed to develop gefitinib-loaded solid lipid nanoparticles (GEF-SLN), and GEF-loaded PEGylated SLN (GEF-P-SLN) for targeting metastatic lung cancer through the lymphatic system. Methods: The prepared SLNs were characterized in terms of physicochemical properties, entrapment efficiency, and in-vitro release. Furthermore, ex-vivo permeability was investigated using the rabbit intestine. Cytotoxicity and apoptotic effects were studied against A549 cell lines as a model for lung cancer. Results: The present results revealed that the particle size and polydispersity index of the prepared formulations range from 114 to 310 nm and 0.066 to 0.350, respectively, with negative zeta-potential (-14 to -27.6). Additionally, SLN and P-SLN showed remarkable entrapment efficiency above 89% and exhibited sustained-release profiles. The permeability study showed that GEF-SLN and GEF-P-SLN enhanced the permeability of GEF by 1.71 and 2.64-fold, respectively, compared with GEF suspension. Cytotoxicity showed that IC50 of pure GEF was 3.5 µg/mL, which decreased to 1.95 and 1.8 µg/mL for GEF-SLN and GEF-P-SLN, respectively. Finally, the apoptotic study revealed that GEF-P-SLN decreased the number of living cells from 49.47 to 3.43 when compared with pure GEF. Conclusion: These results concluded that GEF-P-SLN is a promising approach to improving the therapeutic outcomes of GEF in the treatment of metastatic lung cancer.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Animais , Portadores de Fármacos/química , Gefitinibe/uso terapêutico , Lipídeos/química , Lipossomos , Neoplasias Pulmonares/tratamento farmacológico , Sistema Linfático , Nanopartículas/química , Tamanho da Partícula , Polietilenoglicóis/uso terapêutico , Coelhos
12.
AAPS PharmSciTech ; 23(6): 183, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35773422

RESUMO

The present study aimed to engineer a nanoscale lipid-based lymphatic drug delivery system with D-α-Tocopherol polyethylene glycol 1000 succinate to combat the lymphatic metastasis of lung cancer. The nanoscale lipid-based systems including GEF-SLN, GEF-NLC, and GEF-LE were prepared and pharmaceutically characterized. In addition, the most stable formulation (GEF-NLC) was subjected to an in vitro release study. Afterward, the optimized GEF-NLC was engineered with TPGS (GEF-TPGS-NLC) and subjected to in vitro cytotoxicity, and apoptotic studies using the A549 cells line as a surrogate model for lung cancer. The present results revealed that particle size and polydispersity index of freshly prepared formulations were ranging from 198 to 280 nm and 0.106 to 0.240, respectively, with negative zeta potential ranging from - 14 to - 27.6.mV. An in vitro release study showed that sustained drug release was attained from GEF-NLC containing a high concentration of lipid. In addition, GEF-NLC and GEF-TPGS-NLC showed remarkable entrapment efficiency above 89% and exhibited sustained release profiles. Cytotoxicity showed that IC50 of pure GEF was 11.15 µg/ml which decreased to 7.05 µg/ml for GEF-TPGS-NLC. The apoptotic study revealed that GEF-TPGS-NLC significantly decreased the number of living cells from 67 to 58% when compared with pure GEF. The present results revealed that the nanoscale and lipid composition of the fabricated SLN, NLC, and LE could mediate the lymphatic uptake of GEF to combat the lymphatic tumor metastasis. Particularly, GEF-TPGS-NLC is a promising LDDS to increase the therapeutic outcomes of GEF during the treatment of metastatic lung cancer.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Células A549 , Linhagem Celular Tumoral , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Gefitinibe , Humanos , Lipídeos , Neoplasias Pulmonares/tratamento farmacológico , Tamanho da Partícula , Vitamina E
13.
Bioengineered ; 12(1): 914-926, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33678142

RESUMO

This study aimed to utilize cholesterol conjugation of 5-fluorouracil (5-FUC) and liposomal formulas to enhance the partitioning of 5-FU into low density lipoprotein (LDL) to target hepatocellular carcinoma (HCC). Thus, 5-FU and 5-FUCwere loaded into liposomes. Later, the direct loading and transfer of 5-FU, and 5-FUC from liposomes into LDL were attained. The preparations were characterized in terms of particle size, zeta potential, morphology, entrapment efficiency, and cytotoxicity using the HepG2 cell line. Moreover, the drug deposition into the LDL and liver tissues was investigated. The present results revealed that liposomal preparations have a nanosize range (155 - 194 nm), negative zeta potential (- 0.82 to - 16 mV), entrapment efficiency of 69% for 5-FU, and 66% for 5-FUC. Moreover, LDL particles have a nanosize range (28-49 nm), negative zeta potential (- 17 to -27 mV), and the entrapment efficiency is 11% for 5-FU and 85% for 5-FUC. Furthermore, 5-FUC loaded liposomes displayed a sustained release profile (57%) at 24 h compared to fast release (92%) of 5-FU loaded liposomes. 5-FUC and liposomal formulas enhanced the transfer of 5-FUC into LDL compared to 5-FU. 5-FUC loaded liposomes and LDL have greater cytotoxicity against HepG2 cell lines compared to 5-FU and 5-FUC solutions. Moreover, the deposition of 5-FUC in LDL (26.87ng/mg) and liver tissues (534 ng/gm tissue) was significantly increased 5-FUC liposomes compared to 5-FU (11.7 ng/g tissue) liposomal formulation. In conclusion, 5-FUC is a promising strategy for hepatic targeting of 5-FU through LDL-mediated gateway.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Fluoruracila , Lipoproteínas LDL , Lipossomos , Fígado/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Fluoruracila/química , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Ratos , Ratos Wistar
14.
Artigo em Inglês | MEDLINE | ID: mdl-33551096

RESUMO

Multiple sclerosis (MS), a disease in which the immune system attacks nerve cells, has been associated with both genetic and environmental risk factors. We observed increased micronucleus (MN) formation in SJL/J mouse experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Most of these MN were due to chromosomal loss. Increased activation of MAP kinases, which leads to disruption of the mitotic spindle and improper segregation of chromosomes, is associated with MS. MAP kinase inhibitors, such as PD98059, may therefore be beneficial for MS. In the EAE model, PD98059 treatment reduced adverse effects, including MN formation, lipid peroxidation, and GSH oxidation. Interventions that mitigate chromosomal instability may have therapeutic value in MS.


Assuntos
Instabilidade Cromossômica/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Flavonoides/farmacologia , Proteínas Quinases Ativadas por Mitógeno/química , Esclerose Múltipla/tratamento farmacológico , Animais , Encefalomielite Autoimune Experimental/complicações , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos , Esclerose Múltipla/complicações , Esclerose Múltipla/patologia
15.
Facts Views Vis Obgyn ; 12(4): 291-298, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33575678

RESUMO

OBJECTIVES: This study evaluates current national opinions on screening, diagnosis, and management of thoracic endometriosis. BACKGROUND: Thoracic endometriosis is a rare but serious condition with four main clinical presentations: pneumothorax, haemoptysis, haemothorax, and pulmonary nodules. There are no specialist centres in the United Kingdom despite growing patient desire for recognition, investigation, and treatment. METHODS: We distributed a multiple-choice email survey to senior members of the British Society for Gynaecological Endoscopy. Descriptive statistics were used to present the results. Results: We received 67 responses from experienced clinicians having provided over 800 combined years of endometriosis patient care. The majority of respondents managed over 100 endometriosis patients annually, for more than five years. Over one third had never managed a patient with symptomatic thoracic endometriosis; just 9% had managed more than 30 cases over the course of their career. Screening varied by modality with only 4% of clinicians always taking a history of respiratory symptoms while 69% would always screen for diaphragmatic endometriosis during laparoscopy. The management of symptomatic thoracic endometriosis varied widely with the commonest treatment being surgery followed by hormonal therapies. Regarding management, 71% of respondents felt the team should comprise of four or more different specialists, and 56% believed care should be centralised either regionally or nationally. CONCLUSIONS: Thoracic endometriosis is poorly screened for amongst clinicians with varied management lacking a common diagnostic or therapeutic pathway in the United Kingdom. Specialists expressed a preference for women to be managed in a large multidisciplinary team setting at a regional or national level.

16.
Colloids Surf B Biointerfaces ; 197: 111380, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33068824

RESUMO

Nanoerythrocytes membrane (NEs) has recently been used to improve pharmacokinetics and biodistribution for successful drug therapy. NEs intended to enhance the drug targeting due to immune evasion and long circulation. In this work, NEs could serve as efficient 5- fluorouracil (5-FU) carriers to target liver cells. NEs decorated 5-FU-loaded chitosan coated-poly (lactide-co-glycolic acid) nanoparticles (5-FU-C-NPs-NEs), chitosomes (5-FU-C-LPs-NEs) and 5-FU-NEs were prepared by hypotonic lysis and extrusion procedures. Moreover, 5-FU loaded-chitosan coated 5-FU-NPs (5-FU-C-NPs) and chitosomes (5-FU-C-LPs) for the compared issues were prepared. They were characterized in terms of particle size, encapsulation efficiency (EE), membrane protein content, phosphatidylserine exposure, surface morphology, and in vitro release profiles. Also, their cytotoxic efficacy was determined. Furthermore, pharmacokinetics and biodistribution studies were investigated for optimized formulation. The results revealed that 5-FU-C-NPs-NEs have narrow particle size distribution, desirable EE%, and retained the erythrocyte membrane properties as confirmed by polyacrylamide gel electrophoresis (SDS-PAGE). Additionally, it displayed a sustained release profile up to 72 h of 5-FU-C-NPs-NEs compared to other formulations. In comparison to 5-FU solution and 5-FU-C-NPs, 5-FU-C-NPs-NEs extended the drug release time in vivo with highly uptake by the liver. These results suggest that the 5-FU-C-NPs-NEs could be used to deliver 5-FU and enhance its targetability to liver cancer.


Assuntos
Neoplasias Hepáticas , Nanopartículas , Biomimética , Portadores de Fármacos , Fluoruracila , Humanos , Tamanho da Partícula , Distribuição Tecidual
17.
Curr Drug Deliv ; 18(1): 19-30, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32682379

RESUMO

AIM: This study aimed to explore an affordable technique for the fabrication of Chitosan Nanoshuttles (CSNS) at the ultrafine nanoscale less than 100 nm with improved physicochemical properties, and cytotoxicity on the MCF-7 cell line. BACKGROUND: Despite several studies reported that the antitumor effect of CS and CSNS could achieve intracellular compartment target ability, no enough information is available about this issue and further studies are required to address this assumption. OBJECTIVES: The objective of the current study was to investigate the potential processing variables for the production of ultrafine CSNS (less than; 100 nm) using Box-Behnken Design factorial design (BBD). This was achieved through a study of the effects of processing factors, such as CS concentration, CS/TPP ratio, and pH of the CS solution, on PS, PDI, and ZP. Moreover, the obtained CSNS was evaluated for physicochemical characteristics, morphology. In addition, hemocompatibility and cytotoxicity using Red Blood Cells (RBCs) and MCF-7 cell lines were investigated. METHODS: Box-Behnken Design factorial design (BBD) was used in the analysis of different selected variables. The effects of CS concentration, sodium tripolyphosphate (TPP) ratio, and pH on particle size, Polydispersity Index (PDI), and Zeta Potential (ZP) were measured. Subsequently, the prepared CS nanoshuttles were exposed to stability studies, physicochemical characterization, hemocompatibility, and cytotoxicity using red blood cells and MCF-7 cell lines as surrogate models for in vivo study. RESULT: The present results revealed that the optimized CSNS has ultrafine nanosize, (78.3 ± 0.22 nm), homogenous with PDI (0.131 ± 0.11), and ZP (31.9 ± 0.25 mV). Moreover, CSNS has a spherical shape, amorphous in structure, and physically stable. Moreover, CSNS has biological safety as indicated by a gentle effect on red blood cell hemolysis, besides, the obtained nanoshuttles decrease MCF-7 viability. CONCLUSION: The present findings concluded that the developed ultrafine CSNS has unique properties with enhanced cytotoxicity, thus promising for use in intracellular organelles drug delivery.


Assuntos
Neoplasias da Mama , Quitosana , Nanopartículas , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos , Feminino , Humanos , Células MCF-7 , Tamanho da Partícula
18.
AAPS PharmSciTech ; 21(5): 168, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514657

RESUMO

Bacteriosomes are a member of cell-derived vesicles that are proposed as promising tools in diagnosis, therapy, and drug delivery. These vesicles could be derived from a virus, bacterial cells, and animal cells. Biotechnology techniques were used in bioengineering of cell-derived vesicles in vitro, and in vivo. Bacterial vesicles such as bacterial cells, bacterial ghost, or bacteriosomes are vesicular structures derived from bacteria produced by manipulation of bacterial cells by chemical agents or gene-mediated lysis. Subsequently, bacterial vesicles (bacteriosomes) are non-living, non-denatured bacterial cell envelopes free of the cytoplasm and genetic materials. Gram-negative and Gram-positive bacteria are exploited in the production of bacteriosomes. Bacteriosomes have instinct organs, tissues, cells, as well as subcellular tropism. Moreover, bacteriosomes might be used as immunotherapy and/or drug delivery shuttles. They could act as cargoes for the delivery of small drugs, large therapeutics, and nanoparticles to the specific location. Furthermore, bacteriosomes have nature endosomal escaping ability, hence they could traffic different bio-membranes by endocytosis mechanisms. Therefore, bacterial-derived vesicles could be used in therapy and development of an innovative drug delivery systems. Consequently, utilizing bacteriosomes as drug cargoes enhances the delivery and efficacy of administered therapeutic agents. This review highlighted bacteriosomes in terms of source, engineering, characterization, applications, and limitations.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Imunoterapia/métodos , Animais , Bactérias , Micropartículas Derivadas de Células , Humanos
19.
Saudi Pharm J ; 28(4): 387-396, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273796

RESUMO

Tumor cells overexpress low-density lipoprotein (LDL) receptors (LDL-r). Hence, LDL is proposed as a targeting shuttle of anticancer drugs. Therefore, the objective of this study was to synthesize a dual inhibitor of heat shock protein 27 (HSP27) and human epidermal growth factor receptor 2 (HER2) conjugated with cholesterol and encapsulated into LDL for selective targeting of ovarian cancer cells. In the present study, the anticancer agent and its cholesterol conjugate were successfully prepared and characterized physically for color, shape, and melting point. Moreover, the compounds were chemically characterized for 1H NMR and 13C NMR spectra using FTIR and LCMS/MS. Our results revealed that the prepared anticancer agent and its cholesterol conjugate elicited dual HSP27 and HER2 inhibition, as confirmed using western blotting. The anticancer agent (compound D) entered cells and targeted the HSP27 function, thereby reducing HER2 expression. However, a cholesterol-conjugated anticancer agent (compound F) had high cellular uptake and inhibited the growth of SKOV3 cells after encapsulation into LDL. The obtained results concluded that the design of an LDL-encapsulated cholesterol-conjugated HSP27-HER2 dual inhibitor may be a promising approach to realize specific targeted achieve killing of ovarian cancer.

20.
Curr Drug Deliv ; 17(10): 826-844, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32026776

RESUMO

The prevalence of liver cancer is increasing over the years and it is the fifth leading cause of mortality worldwide. The intrusive features and burden of low survival rate make it a global health issue in both developing and developed countries. The recommended chemotherapy drugs for patients in the intermediate and advanced stages of various liver cancers yield a low response rate due to the nonspecific nature of drug delivery, thus warranting the search for new therapeutic strategies and potential drug delivery carriers. There are several new drug delivery methods available to ferry the targeted molecules to the specific biological environment. In recent years, the nano assembly of lipoprotein moieties (lipidic nanoparticles) has emerged as a promising and efficiently tailored drug delivery system in liver cancer treatment. This increased precision of nano lipoproteins conjugates in chemotherapeutic targeting offers new avenues for the treatment of liver cancer with high specificity and efficiency. This present review is focused on concisely outlining the knowledge of liver cancer diagnosis, existing treatment strategies, lipoproteins, their preparation, mechanism and their potential application in the treatment of liver cancer.


Assuntos
Antineoplásicos , Portadores de Fármacos , Lipoproteínas , Neoplasias Hepáticas , Nanopartículas , Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias Hepáticas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...