Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-508093

RESUMO

The emergence of a polybasic cleavage motif for the protease furin in the SARS-CoV-2 spike protein has been established as a major factor for enhanced viral transmission in humans. The peptide region N-terminal to that motif is extensively mutated in major variants of concern including Alpha, Delta and Omicron. Besides furin, spike proteins from these variants appear to rely on other proteases for maturation, including TMPRSS2 that may share the same cleavage motif. Glycans found near the cleavage site have raised questions about proteolytic processing and the consequences of variant-borne mutations. Here, with a suite of chemical tools, we establish O-linked glycosylation as a major determinant of SARS-CoV-2 spike cleavage by the host proteases furin and TMPRSS2, and as a likely driving force for the emergence of common mutations in variants of concern. We provide direct evidence that the glycosyltransferase GalNAc-T1 primes glycosylation at Thr678 in the living cell, and this glycosylation event is suppressed by many, but not all variant mutations. A novel strategy for rapid bioorthogonal modification of Thr678-containing glycopeptides revealed that introduction of a negative charge completely abrogates furin activity. In a panel of synthetic glycopeptides containing elaborated O-glycans, we found that the sole incorporation of N-acetylgalactosamine did not substantially impact furin activity, but the presence of sialic acid in elaborated O-glycans reduced furin rate by up to 65%. Similarly, O-glycosylation with a sialylated trisaccharide had a negative impact on spike cleavage by TMPRSS2. With a chemistry-centered approach, we firmly establish O-glycosylation as a major determinant of spike maturation and propose that a disruption of O-GalNAc glycosylation is a substantial driving force for the evolution of variants of concern. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=89 SRC="FIGDIR/small/508093v3_ufig1.gif" ALT="Figure 1"> View larger version (26K): org.highwire.dtl.DTLVardef@71b54eorg.highwire.dtl.DTLVardef@1361b4aorg.highwire.dtl.DTLVardef@139bdd9org.highwire.dtl.DTLVardef@1df192b_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-438806

RESUMO

The coronavirus 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread around the world with unprecedented health and socio-economic effects for the global population. While different vaccines are now being made available, very few antiviral drugs have been approved. The main viral protease (nsp5) of SARS-CoV-2 provides an excellent target for antivirals, due to its essential and conserved function in the viral replication cycle. We have expressed, purified and developed assays for nsp5 protease activity. We screened the nsp5 protease against a custom chemical library of over 5,000 characterised pharmaceuticals. We identified calpain inhibitor I and three different peptidyl fluoromethylketones (FMK) as inhibitors of nsp5 activity in vitro, with IC50 values in the low micromolar range. By altering the sequence of our peptidomimetic FMK inhibitors to better mimic the substrate sequence of nsp5, we generated an inhibitor with a subnanomolar IC50. Calpain inhibitor I inhibited viral infection in monkey-derived Vero E6 cells, with an EC50 in the low micromolar range. The most potent and commercially available peptidyl-FMK compound inhibited viral growth in Vero E6 cells to some extent, while our custom peptidyl FMK inhibitor offered a marked antiviral improvement.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-438804

RESUMO

The COVID-19 pandemic has emerged as the biggest life-threatening disease of this century. Whilst vaccination should provide a long-term solution, this is pitted against the constant threat of mutations in the virus rendering the current vaccines less effective. Consequently, small molecule antiviral agents would be extremely useful to complement the vaccination program. The causative agent of COVID-19 is a novel coronavirus, SARS-CoV-2, which encodes at least nine enzymatic activities that all have drug targeting potential. The papain-like protease (PLpro) contained in the nsp3 protein generates viral non-structural proteins from a polyprotein precursor, and cleaves ubiquitin and ISG protein conjugates. Here we describe the expression and purification of PLpro. We developed a protease assay that was used to screen a custom chemical library from which we identified Dihydrotanshinone I and Ro 08-2750 as compounds that inhibit PLpro in protease and isopeptidase assays and also inhibit viral replication in cell culture-based assays.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20071373

RESUMO

The emergence of the novel coronavirus SARS-CoV-2 has led to a pandemic infecting more than two million people worldwide in less than four months, posing a major threat to healthcare systems. This is compounded by the shortage of available tests causing numerous healthcare workers to unnecessarily self-isolate. We provide a roadmap instructing how a research institute can be repurposed in the midst of this crisis, in collaboration with partner hospitals and an established diagnostic laboratory, harnessing existing expertise in virus handling, robotics, PCR, and data science to derive a rapid, high throughput diagnostic testing pipeline for detecting SARS-CoV-2 in patients with suspected COVID-19. The pipeline is used to detect SARS-CoV-2 from combined nose-throat swabs and endotracheal secretions/ bronchoalveolar lavage fluid. Notably, it relies on a series of in-house buffers for virus inactivation and the extraction of viral RNA, thereby reducing the dependency on commercial suppliers at times of global shortage. We use a commercial RT-PCR assay, from BGI, and results are reported with a bespoke online web application that integrates with the healthcare digital system. This strategy facilitates the remote reporting of thousands of samples a day with a turnaround time of under 24 hours, universally applicable to laboratories worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA