Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105381, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866632

RESUMO

Hijacking the ubiquitin proteasome system to elicit targeted protein degradation (TPD) has emerged as a promising therapeutic strategy to target and destroy intracellular proteins at the post-translational level. Small molecule-based TPD approaches, such as proteolysis-targeting chimeras (PROTACs) and molecular glues, have shown potential, with several agents currently in clinical trials. Biological PROTACs (bioPROTACs), which are engineered fusion proteins comprised of a target-binding domain and an E3 ubiquitin ligase, have emerged as a complementary approach for TPD. Here, we describe a new method for the evolution and design of bioPROTACs. Specifically, engineered binding scaffolds based on the third fibronectin type III domain of human tenascin-C (Tn3) were installed into the E3 ligase tripartite motif containing-21 (TRIM21) to redirect its degradation specificity. This was achieved via selection of naïve yeast-displayed Tn3 libraries against two different oncogenic proteins associated with B-cell lymphomas, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) and embryonic ectoderm development protein (EED), and replacing the native substrate-binding domain of TRIM21 with our evolved Tn3 domains. The resulting TRIM21-Tn3 fusion proteins retained the binding properties of the Tn3 as well as the E3 ligase activity of TRIM21. Moreover, we demonstrated that TRIM21-Tn3 fusion proteins efficiently degraded their respective target proteins through the ubiquitin proteasome system in cellular models. We explored the effects of binding domain avidity and E3 ligase utilization to gain insight into the requirements for effective bioPROTAC design. Overall, this study presents a versatile engineering approach that could be used to design and engineer TRIM21-based bioPROTACs against therapeutic targets.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteólise , Ubiquitinação , Ubiquitina/metabolismo
2.
ACS Nano ; 16(8): 12290-12304, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35942986

RESUMO

Assessment of drug activation and subsequent interaction with targets in living tissues could guide nanomedicine design, but technologies enabling insight into how a drug reaches and binds its target are limited. We show that a Hoechst-based reporter system can monitor drug release and engagement from a nanoparticle delivery system in vitro and in vivo, elucidating differences in target-bound drug distribution related to drug-linker and nanoparticle properties. Drug engagement is defined as chemical detachment of drug or reporter from a nanoparticle and subsequent binding to a subcellular target, which in the case of Hoechst results in a fluorescence signal. Hoechst-based nanoreporters for drug activation contain prodrug elements such as dipeptide linkers, conjugation handles, and nanoparticle modifications such as targeting ligands to determine how nanomedicine design affects distribution of drug engaged with a subcellular target, which is tracked via cellular nuclear fluorescence in situ. Furthermore, the nanoplatform is amenable toward common maleimide-based linkers found in many prodrug-based delivery systems including polymer-, peptide-, and antibody-drug conjugates. Findings from the Hoechst reporter system were applied to develop highly potent, targeted, anticancer micelle nanoparticles delivering a monomethyl auristatin E (MMAE) prodrug comprising the same linkers employed in Hoechst studies. MMAE nanomedicine with the optimal drug-linker resulted in effective tumor growth inhibition in mice without associated acute toxicity, whereas the nonoptimal linker that showed broader drug activation in Hoechst reporter studies resulted in severe toxicity. Our results demonstrate the potential to synergize direct visualization of drug engagement with nanomedicine drug-linker design to optimize safety and efficacy.


Assuntos
Antineoplásicos , Imunoconjugados , Nanopartículas , Pró-Fármacos , Camundongos , Animais , Pró-Fármacos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Imunoconjugados/química , Micelas , Nanopartículas/uso terapêutico , Nanopartículas/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Sistemas de Liberação de Medicamentos
3.
J Clin Invest ; 132(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35108220

RESUMO

Many SARS-CoV-2 neutralizing antibodies (nAbs) lose potency against variants of concern. In this study, we developed 2 strategies to produce mutation-resistant antibodies. First, a yeast library expressing mutant receptor binding domains (RBDs) of the spike protein was utilized to screen for potent nAbs that are least susceptible to viral escape. Among the candidate antibodies, P5-22 displayed ultrahigh potency for virus neutralization as well as an outstanding mutation resistance profile. Additionally, P14-44 and P15-16 were recognized as mutation-resistant antibodies with broad betacoronavirus neutralization properties. P15-16 has only 1 binding hotspot, which is K378 in the RBD of SARS-CoV-2. The crystal structure of the P5-22, P14-44, and RBD ternary complex clarified the unique mechanisms that underlie the excellent mutation resistance profiles of these antibodies. Secondly, polymeric IgG enhanced antibody avidity by eliminating P5-22's only hotspot, residue F486 in the RBD, thereby potently blocking cell entry by mutant viruses. Structural and functional analyses of antibodies screened using both potency assays and the yeast RBD library revealed rare, ultrapotent, mutation-resistant nAbs against SARS-CoV-2.


Assuntos
Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Afinidade de Anticorpos , Linfócitos B/imunologia , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Anticorpos Amplamente Neutralizantes/sangue , Anticorpos Amplamente Neutralizantes/genética , COVID-19/terapia , Clonagem Molecular , Modelos Animais de Doenças , Humanos , Imunização Passiva , Imunoglobulina G/imunologia , Técnicas In Vitro , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Testes de Neutralização , Receptores Virais/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Soroterapia para COVID-19
4.
Drug Discov Today Technol ; 40: 13-24, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34916015

RESUMO

Bispecific antibodies combine the specificity of two antibodies into one molecule. During the past two decades, advancement in protein engineering enabled the development of more than 100 bispecific formats, three of which are approved by the FDA for clinical use. In parallel to protein engineering methods, advancement in conjugation chemistries have spurred the use of chemical engineering approaches to generate bispecific antibodies. Herein, we review selected chemical strategies employed to generate bispecific antibodies that cannot be made using protein engineering methods.


Assuntos
Anticorpos Biespecíficos
5.
Mol Cancer Ther ; 20(3): 541-552, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33653945

RESUMO

Resistance to antibody-drug conjugates (ADCs) has been observed in both preclinical models and clinical studies. However, mechanisms of resistance to pyrrolobenzodiazepine (PBD)-conjugated ADCs have not been well characterized and thus, this study was designed to investigate development of resistance to PBD dimer warheads and PBD-conjugated ADCs. We established a PBD-resistant cell line, 361-PBDr, by treating human breast cancer MDA-MB-361 cells with gradually increasing concentrations of SG3199, the PBD dimer released from the PBD drug-linker tesirine. 361-PBDr cells were over 20-fold less sensitive to SG3199 compared with parental cells and were cross-resistant to other PBD warhead and ADCs conjugated with PBDs. Proteomic profiling revealed that downregulation of Schlafen family member 11 (SLFN11), a putative DNA/RNA helicase, sensitizing cancer cells to DNA-damaging agents, was associated with PBD resistance. Confirmatory studies demonstrated that siRNA knockdown of SLFN11 in multiple tumor cell lines conferred reduced sensitivity to SG3199 and PBD-conjugated ADCs. Treatment with EPZ011989, an EZH2 inhibitor, derepressed SLFN11 expression in 361-PBDr and other SLFN11-deficient tumor cells, and increased sensitivity to PBD and PBD-conjugated ADCs, indicating that the suppression of SLFN11 expression is associated with histone methylation as reported. Moreover, we demonstrated that combining an ataxia telangiectasia and Rad3-related protein (ATR) inhibitor, AZD6738, with SG3199 or PBD-based ADCs led to synergistic cytotoxicity in either resistant 361-PBDr cells or cells that SLFN11 was knocked down via siRNA. Collectively, these data provide insights into potential development of resistance to PBDs and PBD-conjugated ADCs, and more importantly, inform strategy development to overcome such resistance.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Benzodiazepinas/metabolismo , Proteínas Nucleares/metabolismo , Pirróis/metabolismo , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Transfecção
6.
Mol Ther Methods Clin Dev ; 19: 330-340, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33145369

RESUMO

The recombinant adeno-associated virus (AAV) vector is one of the most utilized viral vectors in gene therapy due to its robust, long-term in vivo transgene expression and low toxicity. One major hurdle for clinical AAV applications is large-scale manufacturing. In this regard, the baculovirus-based AAV production system is highly attractive due to its scalability and predictable biosafety. Here, we describe a simple method to improve the baculovirus-based AAV production using the ExpiSf Baculovirus Expression System with a chemically defined medium for suspension culture of high-density ExpiSf9 cells. Baculovirus-infected ExpiSf9 cells produced up to 5 × 1011 genome copies of highly purified AAV vectors per 1 mL of suspension culture, which is up to a 19-fold higher yield than the titers we obtained from the conventional Sf9 cell-based system. When mice were administered the same dose of AAV vectors, we saw comparable transduction efficiency and biodistributions between the vectors made in ExpiSf9 and Sf9 cells. Thus, the ExpiSf Baculovirus Expression System would support facile and scalable AAV manufacturing amenable for preclinical and clinical applications.

7.
Int J Mol Sci ; 21(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961794

RESUMO

First-generation cysteine-based site-specific antibody-drug conjugates (ADCs) are limited to one drug per cysteine. However, certain applications require a high drug to antibody ratio (DAR), such as when low-potency payloads are used. Higher drug load can be achieved using classical cysteine conjugation methods, but these result in heterogeneity, suboptimal efficacy and pharmacokinetics. Here, we describe the design, synthesis and validation of heterobifunctional linkers that can be used for the preparation of ADCs with a DAR of two, three and four in a site-specific manner per single cysteine conjugation site, resulting in site-specific ADCs with a DAR of four, six and eight. The designed linkers carry a sulfhydryl-specific iodoacetyl reactive group, and multiple cyclic diene moieties which can efficiently react with maleimide-carrying payloads through the Diels-Alder reaction. As a proof of concept, we synthesized site-specific DAR four, six and eight ADCs carrying tubulysin (AZ13601508) using engineered antibodies with a cysteine inserted after position 239 in the antibody CH2 domain. We evaluated and compared the in vitro cytotoxicity of ADCs obtained via the site-specific platform described herein, with ADCs prepared using classical cysteine conjugation. Our data validated a novel cysteine-based conjugation platform for the preparation of site-specific ADCs with high drug load for therapeutic applications.


Assuntos
Antineoplásicos Imunológicos , Antineoplásicos , Neoplasias da Mama/tratamento farmacológico , Imunoconjugados , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cisteína/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Imunoconjugados/química , Imunoconjugados/farmacologia
8.
Biomacromolecules ; 21(9): 3596-3607, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32786528

RESUMO

Synthetic gene delivery systems employ multiple functions to enable safe and effective transport of DNA to target cells. Here, we describe metabolite-based poly(l-lysine) (PLL) modifiers that improve transfection by imparting both pH buffering and nanoparticle stabilization functions within a single molecular unit. PLL modifiers were based on morpholine (M), morpholine and niacin (MN), or thiomorpholine (TM). PLL modification with (MN) or (TM) imparted buffering function over the pH range of 5-7 both in solution and live cells and enhanced the stability of PLL DNA nanoparticles, which exhibited higher resistance to polyanion exchange and prolonged blood circulation. These properties translated into increased transfection efficiency in vitro coupled with reduced toxicity compared to unmodified PLL and PLL(M). Furthermore, PEG-PLL(MN) DNA nanoparticles transfected muscle tissue in vivo for >45 days following intramuscular injection. These polymer modifiers demonstrate the successful design of multifunctional units that improve transfection of synthetic gene delivery systems while maintaining biocompatibility.


Assuntos
Técnicas de Transferência de Genes , Polilisina , DNA/genética , Terapia Genética , Polietilenoglicóis , Transfecção
9.
Pharmaceutics ; 12(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861347

RESUMO

Bispecific antibody (bsAb) applications have exponentially expanded with the advent of molecular engineering strategies that have addressed many of the initial challenges, including improper light chain pairing, heterodimer purity, aggregation, and pharmacokinetics. However, the lack of high-throughput methods for the generation of monovalent bsAbs has resulted in a bottleneck that has hampered their therapeutic evaluation, as current technologies can be cost-prohibitive and impractical. To address this issue, we incorporated single-matched point mutations in the CH3 domain to recapitulate the physiological process of human IgG4 Fab-arm exchange to generate monovalent bsAbs. Furthermore, we utilized the substitutions H435R and Y436F in the CH3 domain of IgG1, which incorporates residues from human IgG3, thus ablating protein A binding. By exploiting this combination of mutations and optimizing the reduction and reoxidation conditions for Fab arm exchange, highly pure monovalent bsAbs can be rapidly purified directly from combined culture media using standard protein A purification. This methodology, reported herein for the first time, allows for the high-throughput generation of monovalent bsAbs, thus increasing the capacity for evaluating monovalent bsAb iterations for therapeutic potential.

10.
Bioconjug Chem ; 30(9): 2340-2348, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31380623

RESUMO

The normal electron-demand Diels-Alder (DA) cycloaddition is a classic transformation routinely used in synthesis; however, applications in biological systems are limited. Here, we report a spiro[2.4]hepta-4,6-diene-containing noncanonical amino acid (SCpHK) capable of efficient incorporation into antibodies and subsequent coupling with maleimide via a DA reaction. SCpHK was stable throughout protein expression in mammalian cells and enabled covalent attachment of maleimide drug-linkers yielding DA antibody-drug conjugates (DA-ADCs) with nearly quantitative conversion in a one-step process. The uncatalyzed DA reaction between SCpHK and maleimide in aqueous buffer was rapid (1.8-5.4 M-1 s-1), and the antibody-drug adduct was stable in rat serum for at least 1 week at 37 °C. Anti-EphA2 DA-ADCs containing AZ1508 or SG3249 maleimide drug-linkers were potent inhibitors of tumor growth in PC3 tumor models in vivo. The DA bioconjugation strategy described here represents a simple method to produce site-specific and stable ADCs with maleimide drug-linkers.


Assuntos
Imunoconjugados/química , Maleimidas/química , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Reação de Cicloadição , Humanos , Imunoconjugados/farmacologia , Modelos Moleculares , Células PC-3 , Conformação Proteica , Compostos de Espiro/química
13.
Angew Chem Int Ed Engl ; 58(25): 8489-8493, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31018033

RESUMO

Here, we describe a diene-containing noncanonical amino acid (ncAA) capable of undergoing fast and selective normal electron-demand Diels-Alder (DA) reactions following its incorporation into antibodies. A cyclopentadiene derivative of lysine (CpHK) served as the reactive handle for DA transformations and the substrate for genetic incorporation. CpHK incorporated into antibodies with high efficiency and was available for maleimide conjugation or self-reaction depending on position in the amino acid sequence. CpHK at position K274 reacted with the maleimide drug-linker AZ1508 at a rate of ≈79 m-1 s-1 to produce functional antibody-drug conjugates (ADCs) in a one-step process. Incorporation of CpHK at position S239 resulted in dimerization, which covalently linked antibody heavy chains together. The diene ncAA described here is capable of producing therapeutic protein conjugates with clinically validated and widely available maleimide compounds, while also enabling proximity-based stapling through a DA dimerization reaction.


Assuntos
Alcadienos/química , Aminoácidos/química , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Maleimidas/química , Reação de Cicloadição , Dimerização , Humanos , Modelos Moleculares , Estrutura Molecular
14.
ChemMedChem ; 14(12): 1185-1195, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-30980702

RESUMO

We describe the characterization of antigen binding fragments (Fab)-drug conjugates prepared using a dual maleimide pyrrolobenzodiazepine dimer cytotoxic payload (SG3710). Pyrrolobenzodiazepine dimers, which are DNA cross-linkers, are a class of payloads used in antibody-drug conjugates (ADCs). SG3710 was designed to rebridge two adjacent cysteines, such as those that form the canonical interchain disulfide bond between the light and heavy chain in Fab fragments. The rebridging generated homogenous Fab conjugates, with a drug-to-Fab ratio of one, as demonstrated by the preparation of rebridged Fabs derived from the anti-HER2 trastuzumab antibody and from a negative control antibody both prepared using recombinant expression and papain digestion. The resulting anti-HER2 trastuzumab Fab-rebridged conjugate retained antigen binding, was stable in rat serum, and demonstrated potent and antigen-dependent cancer cell-killing ability. Disulfide rebridging with SG3710 is a generic approach to prepare Fab-pyrrolobenzodiazepine dimer conjugates, which does not require the Fabs to be engineered for conjugation. Thus, SG3710 offers a flexible and straightforward platform for the controlled assembly of pyrrolobenzodiazepine dimer conjugates from any Fab for oncology applications.


Assuntos
Benzodiazepinas/farmacologia , Dissulfetos/farmacologia , Imunoconjugados/farmacologia , Fragmentos Fab das Imunoglobulinas/imunologia , Maleimidas/farmacologia , Pirróis/farmacologia , Trastuzumab/farmacologia , Animais , Benzodiazepinas/sangue , Benzodiazepinas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos/sangue , Dissulfetos/química , Relação Dose-Resposta a Droga , Humanos , Imunoconjugados/sangue , Imunoconjugados/química , Fragmentos Fab das Imunoglobulinas/sangue , Fragmentos Fab das Imunoglobulinas/química , Maleimidas/sangue , Maleimidas/química , Estrutura Molecular , Pirróis/sangue , Pirróis/química , Ratos , Relação Estrutura-Atividade , Trastuzumab/sangue , Trastuzumab/química
15.
Curr Top Med Chem ; 19(9): 713-729, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30931860

RESUMO

DNA topoisomerases are enzymes that catalyze the alteration of DNA topology with transiently induced DNA strand breakage, essential for DNA replication. Topoisomerases are validated cancer chemotherapy targets. Anticancer agents targeting Topoisomerase I and II have been in clinical use and proven to be highly effective, though with significant side effects. There are tremendous efforts to develop new generation of topoisomerase inhibitors. Targeted delivery of topoisomerase inhibitors is another way to reduce the side effects. Conjugates of topoisomerases inhibitors with antibody, polymer, or small molecule are developed to target these inhibitors to tumor sites.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Sistemas de Liberação de Medicamentos , Neoplasias/terapia , Inibidores da Topoisomerase/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores da Topoisomerase/síntese química , Inibidores da Topoisomerase/química
16.
Bioconjug Chem ; 30(4): 1232-1243, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30912649

RESUMO

Despite some clinical success with antibody-drug conjugates (ADCs) in patients with solid tumors and hematological malignancies, improvements in ADC design are still desirable due to the narrow therapeutic window of these compounds. Tumor-targeting antibody fragments have distinct advantages over monoclonal antibodies, including more rapid tumor accumulation and enhanced penetration, but are subject to rapid clearance. Half-life extension technologies such as PEGylation and albumin-binding domains (ABDs) have been widely used to improve the pharmacokinetics of many different types of biologics. PEGylation improves pharmacokinetics by increasing hydrodynamic size to reduce renal clearance, whereas ABDs extend half-life via FcRn-mediated recycling. In this study, we used an anti-oncofetal antigen 5T4 diabody conjugated with a highly potent cytotoxic pyrrolobenzodiazepine (PBD) warhead to assess and compare the effects of PEGylation and albumin binding on the in vivo efficacy of antibody fragment drug conjugates. Conjugation of 2× PEG20K to a diabody improved half-life from 40 min to 33 h, and an ABD-diabody fusion protein exhibited a half-life of 45 h in mice. In a xenograft model of breast cancer MDA-MB-436, the ABD-diabody-PBD showed greater tumor growth suppression and better tolerability than either PEG-diabody-PBD or diabody-PBD. These results suggest that the mechanism of half-life extension is an important consideration for designing cytotoxic antitumor agents.


Assuntos
Antineoplásicos/uso terapêutico , Imunoconjugados/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Ligação Competitiva , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ensaio de Imunoadsorção Enzimática , Feminino , Meia-Vida , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Camundongos , Camundongos Nus , Polietilenoglicóis/química , Ensaios Antitumorais Modelo de Xenoenxerto
17.
MAbs ; 11(3): 500-515, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30835621

RESUMO

Most strategies used to prepare homogeneous site-specific antibody-drug conjugates (ADCs) result in ADCs with a drug-to-antibody ratio (DAR) of two. Here, we report a disulfide re-bridging strategy to prepare homogeneous ADCs with DAR of one using a dual-maleimide pyrrolobenzodiazepine (PBD) dimer (SG3710) and an engineered antibody (Flexmab), which has only one intrachain disulfide bridge at the hinge. We demonstrate that SG3710 efficiently re-bridge a Flexmab targeting human epidermal growth factor receptor 2 (HER2), and the resulting ADC was highly resistant to payload loss in serum and exhibited potent anti-tumor activity in a HER2-positive gastric carcinoma xenograft model. Moreover, this ADC was tolerated in rats at twice the dose compared to a site-specific ADC with DAR of two prepared using a single-maleimide PBD dimer (SG3249). Flexmab technologies, in combination with SG3710, provide a platform for generating site-specific homogenous PBD-based ADCs with DAR of one, which have improved biophysical properties and tolerability compared to conventional site-specific PBD-based ADCs with DAR of two.


Assuntos
Antineoplásicos , Benzodiazepinas/química , Imunoconjugados , Pirróis/química , Receptor ErbB-2/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Trastuzumab , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Feminino , Humanos , Imunoconjugados/química , Imunoconjugados/farmacologia , Células MCF-7 , Camundongos Nus , Ratos , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Trastuzumab/química , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Data Brief ; 21: 2208-2220, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30533469

RESUMO

Experimental procedures and 1H and 13C NMR of the heterotrifunctional linker used for preparation of dual drug conjugates and PBD payload are included. Procedure for carrying preparation of antibody linker conjugate via thiol maleimide conjugation and antibody drug conjugates (ADCs) using copper assisted click reaction and oxime ligation, their cell viability assay and western blotting procedures of the resultant conjugates are detailed. Also, reduced mass spectroscopy results and in vitro cytotoxicity of antibody drug conjugates used in this article are shown.

19.
Bioorg Med Chem Lett ; 28(23-24): 3617-3621, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389292

RESUMO

Codelivery of multiple therapeutic agents with different anticancer mechanisms can overcome drug resistance as well as generate additive or synergistic anticancer effects that may enhance the antitumor efficacy. Antibody-drug conjugates (ADCs) can be used for highly specific delivery of multiple therapeutic agents with different anticancer mechanisms, though more research is required towards designing flexible platforms on which dual drug ADCs could be prepared. Herein, we describe the synthesis of a heterotrifunctional linker that could be used to construct flexible platforms for preparing dual-cytotoxic drug conjugates in a site-specific manner. As a proof of concept, we synthesized dual drug ADCs carrying monomethyl auristain E (MMAE, tubulin polymerization inhibitor) and pyrrolobenzodiazepine dimer (PBD, DNA minor groove alkylator). We then evaluated the dual drug ADCs for in vitro efficacy and confirmed the dual mechanism of action.


Assuntos
Imunoconjugados/química , Moduladores de Tubulina/química , Aminobenzoatos/química , Anticorpos Monoclonais/química , Antineoplásicos Alquilantes/química , Benzodiazepinas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Click , Humanos , Imunoconjugados/farmacologia , Oligopeptídeos/química , Pirróis/química
20.
Bioconjug Chem ; 29(7): 2406-2414, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29932647

RESUMO

The thiol-maleimide linkage is widely used for antibody-drug conjugate (ADC) production; however, conjugation of maleimide-drugs could be improved by simplified procedures and reliable conjugate stability. Here, we report the evaluation of electron-rich and cyclic dienes that can be appended to antibodies and reacted with maleimide-containing drugs through the Diels-Alder (DA) reaction. Drug conjugation is fast and quantitative due to reaction acceleration in water, and the linkage is more stable in serum than in the corresponding thiol-maleimide adduct with the same drug. ADCs produced using the DA reaction (DAADCs) are effective in vitro and in vivo, demonstrating the utility of this reaction in producing effective biotherapeutics. Given the large number of commercially available maleimide compounds, this conjugation approach could be readily applied to the production of a wide range of antibody (or protein) conjugates.


Assuntos
Reação de Cicloadição/métodos , Imunoconjugados/química , Maleimidas/química , Alcenos , Anticorpos/química , Reagentes de Ligações Cruzadas/química , Estabilidade de Medicamentos , Maleimidas/uso terapêutico , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...