Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727278

RESUMO

Spermatogenesis involves a complex process of cellular differentiation maintained by spermatogonial stem cells (SSCs). Being critical to male reproduction, it is generally assumed that spermatogenesis starts and ends in equivalent transcriptional states in related species. Based on single-cell gene expression profiling, it has been proposed that undifferentiated human spermatogonia can be subclassified into four heterogenous subtypes, termed states 0, 0A, 0B, and 1. To increase the resolution of the undifferentiated compartment and trace the origin of the spermatogenic trajectory, we re-analysed the single-cell (sc) RNA-sequencing libraries of 34 post-pubescent human testes to generate an integrated atlas of germ cell differentiation. We then used this atlas to perform comparative analyses of the putative SSC transcriptome both across human development (using 28 foetal and pre-pubertal scRNA-seq libraries) and across species (including data from sheep, pig, buffalo, rhesus and cynomolgus macaque, rat, and mouse). Alongside its detailed characterisation, we show that the transcriptional heterogeneity of the undifferentiated spermatogonial cell compartment varies not only between species but across development. Our findings associate 'state 0B' with a suppressive transcriptomic programme that, in adult humans, acts to functionally oppose proliferation and maintain cells in a ready-to-react state. Consistent with this conclusion, we show that human foetal germ cells-which are mitotically arrested-can be characterised solely as state 0B. While germ cells with a state 0B signature are also present in foetal mice (and are likely conserved at this stage throughout mammals), they are not maintained into adulthood. We conjecture that in rodents, the foetal-like state 0B differentiates at birth into the renewing SSC population, whereas in humans it is maintained as a reserve population, supporting testicular homeostasis over a longer reproductive lifespan while reducing mutagenic load. Together, these results suggest that SSCs adopt differing evolutionary strategies across species to ensure fertility and genome integrity over vastly differing life histories and reproductive timeframes.


Assuntos
Espermatogônias , Humanos , Animais , Masculino , Espermatogônias/citologia , Espermatogônias/metabolismo , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Germinativas Adultas/citologia , Diferenciação Celular/genética , Espermatogênese/genética , Transcriptoma/genética , Adulto , Camundongos , Feto/citologia , Testículo/citologia , Testículo/metabolismo , Roedores , Ratos , Análise de Célula Única
2.
J Pathol ; 263(1): 1-4, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38362619

RESUMO

Testicular germ cell tumours (TGCTs) derived from immature (type I) and pluripotent germ cell neoplasia in situ (GCNIS, type II) are characterised by remarkable phenotypic heterogeneity and plasticity. In contrast, the rare spermatocytic tumour (SpT, type III), derived from mature spermatogonia, is considered a homogenous and benign tumour but may occasionally present as an anaplastic or an aggressive sarcomatoid tumour. While various oncogenic processes had been proposed, the precise mechanism driving malignant progression remained elusive until the molecular characterisation of a series of atypical SpTs described in a recent issue of The Journal of Pathology. The emerging picture suggests the presence of two distinct trajectories for SpTs, involving either RAS/mitogen-activated protein kinase pathway mutations or a ploidy shift with secondary TP53 mutations and/or gain of chromosome 12p, the latter known as pathognomonic for type II GCNIS-derived TGCTs. Here, we discuss the implications of these findings, seen from the perspective of germ cell biology and the unique features of different TGCTs. The evolving phenotype of SpTs, induced by genomic and epigenetic changes, illustrates that the concept of plasticity applies to all germ cell tumours, making them inherently heterogenous and capable of significant transformation during progression. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Seminoma , Neoplasias Testiculares , Masculino , Humanos , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/metabolismo , Mutação , Seminoma/genética
3.
Trends Genet ; 39(8): 598-599, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37244758

RESUMO

The germline mutation rate (GMR) sets the pace at which mutations, the raw material of evolution, are introduced into the genome. By sequencing a dataset of unprecedently broad phylogenetic scope, Bergeron et al. estimated species-specific GMR, offering numerous insights into how this parameter shapes and is shaped by life-history traits.


Assuntos
Evolução Molecular , Mutação em Linhagem Germinativa , Filogenia , Mutação em Linhagem Germinativa/genética , Taxa de Mutação , Mutação
4.
J Med Genet ; 60(9): 925-931, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36931705

RESUMO

BACKGROUND: Diagnosis of a child with a genetic condition leads to parents asking whether there is a risk the condition could occur again with future pregnancies. If the cause is identified as an apparent de novo mutation (DNM), couples are currently given a generic, population average, recurrence risk of ~1%-2%, depending on the condition. Although DNMs usually arise as one-off events, they can also originate through the process of mosaicism in either parent; in this instance, the DNM is present in multiple germ cells and the actual recurrence risk could theoretically be as high as 50%. METHODS: Our qualitative interview study examined the views and reflections on current practice provided by UK practitioners working in clinical genetics (n=20) regarding the potential impact of PREcision Genetic Counselling And REproduction (PREGCARE)-a new preconception personalised recurrence risk assessment strategy. RESULTS: Those interviewed regarded PREGCARE as a very useful addition to risk management, especially for cases where it revised the risk downwards or clarified that a couple's personalised recurrence risk meets National Health Service thresholds for non-invasive prenatal testing, otherwise inaccessible based on the generic DNM recurrence risk. CONCLUSION: Participants said it could release some couples requiring reassurance from undergoing unnecessary invasive testing in future pregnancies. However, they regarded mosaicism and PREGCARE as complex concepts to communicate, requiring further training and additional appointment time for pre-test genetic counselling to prepare couples for all the possible outcomes of a personalised risk assessment, including potentially identifying the parental origin of the DNM, and to ensure informed consent.


Assuntos
Aconselhamento Genético , Medicina Estatal , Gravidez , Feminino , Humanos , Criança , Mosaicismo , Medição de Risco , Aconselhamento , Reino Unido/epidemiologia
5.
Nat Commun ; 14(1): 853, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792598

RESUMO

Following the diagnosis of a paediatric disorder caused by an apparently de novo mutation, a recurrence risk of 1-2% is frequently quoted due to the possibility of parental germline mosaicism; but for any specific couple, this figure is usually incorrect. We present a systematic approach to providing individualized recurrence risk. By combining locus-specific sequencing of multiple tissues to detect occult mosaicism with long-read sequencing to determine the parent-of-origin of the mutation, we show that we can stratify the majority of couples into one of seven discrete categories associated with substantially different risks to future offspring. Among 58 families with a single affected offspring (representing 59 de novo mutations in 49 genes), the recurrence risk for 35 (59%) was decreased below 0.1%, but increased owing to parental mixed mosaicism for 5 (9%)-that could be quantified in semen for paternal cases (recurrence risks of 5.6-12.1%). Implementation of this strategy offers the prospect of driving a major transformation in the practice of genetic counselling.


Assuntos
Pai , Parto , Masculino , Gravidez , Feminino , Humanos , Criança , Mutação , Medição de Risco , Células Germinativas , Mosaicismo , Linhagem , Mutação em Linhagem Germinativa
6.
Fertil Steril ; 118(6): 1001-1012, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36351856

RESUMO

Advanced paternal age is associated with an increased risk of fathering children with genetic disorders and other adverse reproductive consequences. However, the mechanisms underlying this phenomenon remain largely unexplored. In this review, we focus on the impact of paternal age on de novo mutations that are an important contributor to genetic disease and can be studied both indirectly through large-scale sequencing studies and directly in the tissue in which they predominantly arise-the aging testis. We discuss the recent data that have helped establish the origins and frequency of de novo mutations, and highlight experimental evidence about the close link between new mutations, parental age, and genetic disease. We then focus on a small group of rare genetic conditions, the so-called "paternal age effect" disorders that show a strong association between paternal age and disease prevalence, and discuss the underlying mechanism ("selfish selection") and implications of this process in more detail. More broadly, understanding the causes and consequences of paternal age on genetic risk has important implications both for individual couples and for public health advice given that the average age of fatherhood is steadily increasing in many developed nations.


Assuntos
Idade Paterna , Testículo , Humanos , Masculino , Envelhecimento , Mutação
7.
BMC Med ; 18(1): 374, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33272271

RESUMO

BACKGROUND: Clinical studies indicate chemotherapy agents used in childhood cancer treatment regimens may impact future fertility. However, effects of individual agents on prepubertal human testis, necessary to identify later risk, have not been determined. The study aimed to investigate the impact of cisplatin, commonly used in childhood cancer, on immature (foetal and prepubertal) human testicular tissues. Comparison was made with carboplatin, which is used as an alternative to cisplatin in order to reduce toxicity in healthy tissues. METHODS: We developed an organotypic culture system combined with xenografting to determine the effect of clinically-relevant exposure to platinum-based chemotherapeutics on human testis. Human foetal and prepubertal testicular tissues were cultured and exposed to cisplatin, carboplatin or vehicle for 24 h, followed by 24-240 h in culture or long-term xenografting. Survival, proliferation and apoptosis of prepubertal germ stem cell populations (gonocytes and spermatogonia), critical for sperm production in adulthood, were quantified. RESULTS: Cisplatin exposure resulted in a significant reduction in the total number of germ cells (- 44%, p < 0.0001) in human foetal testis, which involved an initial loss of gonocytes followed by a significant reduction in spermatogonia. This coincided with a reduction (- 70%, p < 0.05) in germ cell proliferation. Cisplatin exposure resulted in similar effects on total germ cell number (including spermatogonial stem cells) in prepubertal human testicular tissues, demonstrating direct relevance to childhood cancer patients. Xenografting of cisplatin-exposed human foetal testicular tissue demonstrated that germ cell loss (- 42%, p < 0.01) persisted at 12 weeks. Comparison between exposures to human-relevant concentrations of cisplatin and carboplatin revealed a very similar degree of germ cell loss at 240 h post-exposure. CONCLUSIONS: This is the first demonstration of direct effects of chemotherapy exposure on germ cell populations in human foetal and prepubertal testis, demonstrating platinum-induced loss of all germ cell populations, and similar effects of cisplatin or carboplatin. Furthermore, these experimental approaches can be used to determine the effects of established and novel cancer therapies on the developing testis that will inform fertility counselling and development of strategies to preserve fertility in children with cancer.


Assuntos
Carboplatina/efeitos adversos , Cisplatino/efeitos adversos , Preservação da Fertilidade/métodos , Neoplasias/complicações , Testículo/efeitos dos fármacos , Animais , Carboplatina/farmacologia , Criança , Cisplatino/farmacologia , Humanos , Masculino , Camundongos , Neoplasias/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cell Stem Cell ; 26(2): 262-276.e4, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31928944

RESUMO

The human testis undergoes dramatic developmental and structural changes during puberty, including proliferation and maturation of somatic niche cells, and the onset of spermatogenesis. To characterize this understudied process, we profiled and analyzed single-cell transcriptomes of ∼10,000 testicular cells from four boys spanning puberty and compared them to those of infants and adults. During puberty, undifferentiated spermatogonia sequentially expand and differentiate prior to the initiation of gametogenesis. Notably, we identify a common pre-pubertal progenitor for Leydig and myoid cells and delineate candidate factors controlling pubertal differentiation. Furthermore, pre-pubertal Sertoli cells exhibit two distinct transcriptional states differing in metabolic profiles before converging to an alternative single mature population during puberty. Roles for testosterone in Sertoli cell maturation, antimicrobial peptide secretion, and spermatogonial differentiation are further highlighted through single-cell analysis of testosterone-suppressed transfemale testes. Taken together, our transcriptional atlas of the developing human testis provides multiple insights into developmental changes and key factors accompanying male puberty.


Assuntos
Espermatogônias , Testículo , Adulto , Humanos , Lactente , Masculino , Puberdade , Células de Sertoli , Espermatogênese/genética
11.
Bioinformatics ; 35(24): 5349-5350, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31350555

RESUMO

SUMMARY: amplimap is a command-line tool to automate the processing and analysis of data from targeted next-generation sequencing experiments with PCR-based amplicons or capture-based enrichment systems. From raw sequencing reads, amplimap generates output such as read alignments, annotated variant calls, target coverage statistics and variant allele counts and frequencies for each target base pair. In addition to its focus on user-friendliness and reproducibility, amplimap supports advanced features such as consensus base calling for read families based on unique molecular identifiers and filtering false positive variant calls caused by amplification of off-target loci. AVAILABILITY AND IMPLEMENTATION: amplimap is available as a free Python package under the open-source Apache 2.0 License. Documentation, source code and installation instructions are available at https://github.com/koelling/amplimap.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Alelos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes
12.
Hum Reprod ; 34(8): 1404-1415, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31348830

RESUMO

STUDY QUESTION: What effect does cancer treatment have on levels of spontaneous selfish fibroblast growth factor receptor 2 (FGFR2) point mutations in human sperm? SUMMARY ANSWER: Chemotherapy and radiotherapy do not increase levels of spontaneous FGFR2 mutations in sperm but, unexpectedly, highly-sterilizing treatments dramatically reduce the levels of the disease-associated c.755C > G (Apert syndrome) mutation in sperm. WHAT IS KNOWN ALREADY: Cancer treatments lead to short-term increases in gross DNA damage (chromosomal abnormalities and DNA fragmentation) but the long-term effects, particularly at the single nucleotide resolution level, are poorly understood. We have exploited an ultra-sensitive assay to directly quantify point mutation levels at the FGFR2 locus. STUDY DESIGN, SIZE, DURATION: 'Selfish' mutations are disease-associated mutations that occur spontaneously in the sperm of most men and their levels typically increase with age. Levels of mutations at c.752-755 of FGFR2 (including c.755C > G and c.755C > T associated with Apert and Crouzon syndromes, respectively) in semen post-cancer treatment from 18 men were compared to levels in pre-treatment samples from the same individuals (n = 4) or levels in previously screened population controls (n = 99). PARTICIPANTS/MATERIALS, SETTING, METHODS: Cancer patients were stratified into four different groups based on the treatments they received and the length of time for spermatogenesis recovery. DNA extracted from semen samples was analysed using a previously established highly sensitive assay to identify mutations at positions c.752-755 of FGFR2. Five to ten micrograms of semen genomic DNA was spiked with internal controls for quantification purposes, digested with MboI restriction enzyme and gel extracted. Following PCR amplification, further MboI digestion and a nested PCR with barcoding primers, samples were sequenced on Illumina MiSeq. Mutation levels were determined relative to the spiked internal control; in individuals heterozygous for a nearby common single nucleotide polymorphism (SNP), mutations were phased to their respective alleles. MAIN RESULTS AND THE ROLE OF CHANCE: Patients treated with moderately-sterilizing alkylating regimens and who recovered spermatogenesis within <3 years after therapy (Group 3, n = 4) or non - alkylating chemotherapy and/or low gonadal radiation doses (Group 1, n = 4) had mutation levels similar to untreated controls. However, patients who had highly-sterilizing alkylating treatments (i.e. >5 years to spermatogenesis recovery) (Group 2, n = 7) or pelvic radiotherapy (Group 4, n = 3) exhibited c.755C > G mutation levels at or below background. Two patients (A and B) treated with highly-sterilizing alkylating agents demonstrated a clear reduction from pre-treatment levels; however pre-treatment samples were not available for the other patients with low mutation levels. Therefore, although based on their age we would expect detectable levels of mutations, we cannot exclude the possibility that these patients also had low mutation levels pre-treatment. In three patients with low c.755C > G levels at the first timepoint post-treatment, we observed increasing mutation levels over time. For two such patients we could phase the mutation to a nearby polymorphism (SNP) and determine that the mutation counts likely originated from a single or a small number of mutational events. LIMITATIONS, REASONS FOR CAUTION: This study was limited to 18 patients with different treatment regimens; for nine of the 18 patients, samples from only one timepoint were available. Only 12 different de novo substitutions at the FGFR2 c.752-755 locus were assessed, two of which are known to be disease associated. WIDER IMPLICATIONS OF THE FINDINGS: Our data add to the body of evidence from epidemiological studies and experimental data in humans suggesting that male germline stem cells are resilient to the accumulation of spontaneous mutations. Collectively, these data should provide physicians and health-care professionals with reassuring experimental-based evidence for counselling of male cancer patients contemplating their reproductive options several years after treatment. STUDY FUNDING/COMPETING INTEREST(S): This work was primarily supported by grants from the Wellcome (grant 091182 to AG and AOMW; grant 102 731 to AOMW), the University of Oxford Medical Sciences Division Internal Fund (grant 0005128 to GJM and AG), the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre Programme (to AG) and the US National Institutes of Health (to MLM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. None of the authors has any conflicts of interest to declare. TRIAL REGISTRATION NUMBER: NA.


Assuntos
Antineoplásicos/administração & dosagem , Sobreviventes de Câncer , Neoplasias/terapia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Espermatozoides/efeitos da radiação , Adulto , Antineoplásicos/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Humanos , Masculino , Mutação/efeitos dos fármacos , Mutação/efeitos da radiação , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radioterapia , Análise do Sêmen , Contagem de Espermatozoides , Espermatogênese/efeitos dos fármacos , Espermatogênese/efeitos da radiação , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo
13.
Genome Res ; 28(12): 1779-1790, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30355600

RESUMO

Mosaic mutations present in the germline have important implications for reproductive risk and disease transmission. We previously demonstrated a phenomenon occurring in the male germline, whereby specific mutations arising spontaneously in stem cells (spermatogonia) lead to clonal expansion, resulting in elevated mutation levels in sperm over time. This process, termed "selfish spermatogonial selection," explains the high spontaneous birth prevalence and strong paternal age-effect of disorders such as achondroplasia and Apert, Noonan and Costello syndromes, with direct experimental evidence currently available for specific positions of six genes (FGFR2, FGFR3, RET, PTPN11, HRAS, and KRAS). We present a discovery screen to identify novel mutations and genes showing evidence of positive selection in the male germline, by performing massively parallel simplex PCR using RainDance technology to interrogate mutational hotspots in 67 genes (51.5 kb in total) in 276 biopsies of testes from five men (median age, 83 yr). Following ultradeep sequencing (about 16,000×), development of a low-frequency variant prioritization strategy, and targeted validation, we identified 61 distinct variants present at frequencies as low as 0.06%, including 54 variants not previously directly associated with selfish selection. The majority (80%) of variants identified have previously been implicated in developmental disorders and/or oncogenesis and include mutations in six newly associated genes (BRAF, CBL, MAP2K1, MAP2K2, RAF1, and SOS1), all of which encode components of the RAS-MAPK pathway and activate signaling. Our findings extend the link between mutations dysregulating the RAS-MAPK pathway and selfish selection, and show that the aging male germline is a repository for such deleterious mutations.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Transdução de Sinais , Testículo/metabolismo , Proteínas ras/metabolismo , Idoso , Idoso de 80 Anos ou mais , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade
14.
Cell Res ; 28(12): 1141-1157, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315278

RESUMO

Human adult spermatogenesis balances spermatogonial stem cell (SSC) self-renewal and differentiation, alongside complex germ cell-niche interactions, to ensure long-term fertility and faithful genome propagation. Here, we performed single-cell RNA sequencing of ~6500 testicular cells from young adults. We found five niche/somatic cell types (Leydig, myoid, Sertoli, endothelial, macrophage), and observed germline-niche interactions and key human-mouse differences. Spermatogenesis, including meiosis, was reconstructed computationally, revealing sequential coding, non-coding, and repeat-element transcriptional signatures. Interestingly, we identified five discrete transcriptional/developmental spermatogonial states, including a novel early SSC state, termed State 0. Epigenetic features and nascent transcription analyses suggested developmental plasticity within spermatogonial States. To understand the origin of State 0, we profiled testicular cells from infants, and identified distinct similarities between adult State 0 and infant SSCs. Overall, our datasets describe key transcriptional and epigenetic signatures of the normal adult human testis, and provide new insights into germ cell developmental transitions and plasticity.


Assuntos
Espermatogênese/genética , Espermatogônias/metabolismo , Testículo/citologia , Testículo/metabolismo , Adolescente , Adulto , Animais , Atlas como Assunto , Sequência de Bases , Ciclo Celular/genética , Plasticidade Celular/genética , Humanos , Lactente , Masculino , Camundongos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Espermatogônias/citologia , Espermatogônias/crescimento & desenvolvimento , Transcriptoma
15.
Cell Stem Cell ; 21(4): 533-546.e6, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985528

RESUMO

Human adult spermatogonial stem cells (hSSCs) must balance self-renewal and differentiation. To understand how this is achieved, we profiled DNA methylation and open chromatin (ATAC-seq) in SSEA4+ hSSCs, analyzed bulk and single-cell RNA transcriptomes (RNA-seq) in SSEA4+ hSSCs and differentiating c-KIT+ spermatogonia, and performed validation studies via immunofluorescence. First, DNA hypomethylation at embryonic developmental genes supports their epigenetic "poising" in hSSCs for future/embryonic expression, while core pluripotency genes (OCT4 and NANOG) were transcriptionally and epigenetically repressed. Interestingly, open chromatin in hSSCs was strikingly enriched in binding sites for pioneer factors (NFYA/B, DMRT1, and hormone receptors). Remarkably, single-cell RNA-seq clustering analysis identified four cellular/developmental states during hSSC differentiation, involving major transitions in cell-cycle and transcriptional regulators, splicing and signaling factors, and glucose/mitochondria regulators. Overall, our results outline the dynamic chromatin/transcription landscape operating in hSSCs and identify crucial molecular pathways that accompany the transition from quiescence to proliferation and differentiation.


Assuntos
Cromatina/metabolismo , Análise de Sequência de RNA/métodos , Transdução de Sinais , Análise de Célula Única/métodos , Espermatogônias/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Sequência de Bases , Sítios de Ligação , Análise por Conglomerados , DNA/metabolismo , Metilação de DNA/genética , Genômica , Humanos , Masculino , Meiose , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Receptores de Superfície Celular/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Túbulos Seminíferos/citologia , Antígenos Embrionários Estágio-Específicos/metabolismo , Transcrição Gênica , Transcriptoma/genética
17.
Hum Mutat ; 38(10): 1360-1364, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28639312

RESUMO

We report the case of a male patient with Larsen syndrome found to be mosaic for a novel point mutation in FLNB in whom it was possible to provide evidence-based personalized counseling on transmission risk to future offspring. Using dideoxy sequencing, a low-level FLNB c.698A>G, encoding p.(Tyr233Cys) mutation was detected in buccal mucosa and fibroblast DNA. Mutation quantification was performed by deep next-generation sequencing (NGS) of DNA extracted from three somatic tissues (blood, fibroblasts, saliva) and a sperm sample. The mutation was detectable in all tissues tested, at levels ranging from 7% to 10% (mutation present in ∼20% of diploid somatic cells and 7% of haploid sperm), demonstrating the involvement of both somatic and gonadal lineages in this patient. This report illustrates the clinical utility of performing targeted NGS analysis on sperm from males with a mosaic condition in order to provide personalized transmission risk and offer evidence-based counseling on reproductive safety.


Assuntos
Filaminas/genética , Aconselhamento Genético , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Adulto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mosaicismo , Osteocondrodisplasias/patologia , Fenótipo , Mutação Puntual/genética , Medicina de Precisão , Espermatozoides/patologia
18.
PLoS One ; 12(5): e0178169, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542371

RESUMO

Adult male germline stem cells (spermatogonia) proliferate by mitosis and, after puberty, generate spermatocytes that undertake meiosis to produce haploid spermatozoa. Germ cells are under evolutionary constraint to curtail mutations and maintain genome integrity. Despite constant turnover, spermatogonia very rarely form tumors, so-called spermatocytic tumors (SpT). In line with the previous identification of FGFR3 and HRAS selfish mutations in a subset of cases, candidate gene screening of 29 SpTs identified an oncogenic NRAS mutation in two cases. To gain insights in the etiology of SpT and into properties of the male germline, we performed whole-genome sequencing of five tumors (4/5 with matched normal tissue). The acquired single nucleotide variant load was extremely low (~0.2 per Mb), with an average of 6 (2-9) non-synonymous variants per tumor, none of which is likely to be oncogenic. The observed mutational signature of SpTs is strikingly similar to that of germline de novo mutations, mostly involving C>T transitions with a significant enrichment in the ACG trinucleotide context. The tumors exhibited extensive aneuploidy (50-99 autosomes/tumor) involving whole-chromosomes, with recurrent gains of chr9 and chr20 and loss of chr7, suggesting that aneuploidy itself represents the initiating oncogenic event. We propose that SpT etiology recapitulates the unique properties of male germ cells; because of evolutionary constraints to maintain low point mutation rate, rare tumorigenic driver events are caused by a combination of gene imbalance mediated via whole-chromosome aneuploidy. Finally, we propose a general framework of male germ cell tumor pathology that accounts for their mutational landscape, timing and cellular origin.


Assuntos
Biomarcadores Tumorais/genética , Genoma Humano , Mutação em Linhagem Germinativa/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Espermatócitos/patologia , Neoplasias Testiculares/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA , Humanos , Masculino , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Maturidade Sexual , Espermatócitos/metabolismo , Neoplasias Testiculares/patologia
19.
Nat Genet ; 48(8): 823-4, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27463396

RESUMO

Analysis of a large whole-genome sequencing data set of 36,441 high-quality de novo mutations (DNMs) that arose in 816 family trios provides an unprecedented view into the landscape of DNMs in the germ line. This work both refines and challenges some of the views previously held on the nature and origin of DNMs.


Assuntos
Mutação em Linhagem Germinativa , Mutação Puntual , Humanos
20.
Am J Hum Genet ; 99(1): 125-38, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27374770

RESUMO

DNA replication precisely duplicates the genome to ensure stable inheritance of genetic information. Impaired licensing of origins of replication during the G1 phase of the cell cycle has been implicated in Meier-Gorlin syndrome (MGS), a disorder defined by the triad of short stature, microtia, and a/hypoplastic patellae. Biallelic partial loss-of-function mutations in multiple components of the pre-replication complex (preRC; ORC1, ORC4, ORC6, CDT1, or CDC6) as well as de novo stabilizing mutations in the licensing inhibitor, GMNN, cause MGS. Here we report the identification of mutations in CDC45 in 15 affected individuals from 12 families with MGS and/or craniosynostosis. CDC45 encodes a component of both the pre-initiation (preIC) and CMG helicase complexes, required for initiation of DNA replication origin firing and ongoing DNA synthesis during S-phase itself, respectively, and hence is functionally distinct from previously identified MGS-associated genes. The phenotypes of affected individuals range from syndromic coronal craniosynostosis to severe growth restriction, fulfilling diagnostic criteria for Meier-Gorlin syndrome. All mutations identified were biallelic and included synonymous mutations altering splicing of physiological CDC45 transcripts, as well as amino acid substitutions expected to result in partial loss of function. Functionally, mutations reduce levels of full-length transcripts and protein in subject cells, consistent with partial loss of CDC45 function and a predicted limited rate of DNA replication and cell proliferation. Our findings therefore implicate the preIC as an additional protein complex involved in the etiology of MGS and connect the core cellular machinery of genome replication with growth, chondrogenesis, and cranial suture homeostasis.


Assuntos
Proteínas de Ciclo Celular/genética , Microtia Congênita/genética , Craniossinostoses/genética , Transtornos do Crescimento/genética , Micrognatismo/genética , Mutação , Patela/anormalidades , Adolescente , Adulto , Alelos , Processamento Alternativo/genética , Sequência de Aminoácidos , Âmnio/citologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Células Cultivadas , Criança , Pré-Escolar , Análise Mutacional de DNA , Replicação do DNA , Exoma/genética , Éxons/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Modelos Moleculares , Conformação Proteica , Síndrome , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...