Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Front Immunol ; 15: 1396759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736888

RESUMO

Guided bone regeneration (GBR) is one of the most widely used and thoroughly documented alveolar bone augmentation surgeries. However, implanting GBR membranes inevitably triggers an immune response, which can lead to inflammation and failure of bone augmentation. It has been shown that GBR membranes may significantly improve in vivo outcomes as potent immunomodulators, rather than solely serving as traditional barriers. Macrophages play crucial roles in immune responses and participate in the entire process of bone injury repair. The significant diversity and high plasticity of macrophages complicate our understanding of the immunomodulatory mechanisms underlying GBR. This review provides a comprehensive summary of recent findings on the potential role of macrophages in GBR for bone defects in situ. Specifically, macrophages can promote osteogenesis or fibrous tissue formation in bone defects and degradation or fibrous encapsulation of membranes. Moreover, GBR membranes can influence the recruitment and polarization of macrophages. Therefore, immunomodulating GBR membranes are primarily developed by improving macrophage recruitment and aggregation as well as regulating macrophage polarization. However, certain challenges remain to be addressed in the future. For example, developing more rational and sophisticated sequential delivery systems for macrophage activation reagents; addressing the interference of bone graft materials and dental implants; and understanding the correlations among membrane degradation, macrophage responses, and bone regeneration.


Assuntos
Regeneração Óssea , Macrófagos , Humanos , Regeneração Óssea/imunologia , Macrófagos/imunologia , Animais , Regeneração Tecidual Guiada/métodos , Osteogênese
2.
Food Chem ; 450: 139375, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38653052

RESUMO

Cooked off-flavor was produced during the processing of concentrated peach puree (CPP), which led to aroma deterioration. Enzymatic treatment was beneficial in eliminating off-flavors and improving the aroma quality. Herein, the efficacy of glycosidase (AR2000), glucose oxidation (GOD), and their combination on the inhibition of off-flavors and aroma enhancement were evaluated. Compared with CPP, contents of benzaldehyde, benzyl alcohol, nonanal, and linalool increased by 198%, 1222%, 781%, and 71% after AR2000 treatment via the metabolisms of shikimate, glucose, linoleic acid, and linolenic acid, leading to the strengthening of floral and grassy. Due to the removal of 1-octen-3-one via linolenic acid metabolism, cooked off-flavor could be significantly weakened by GOD. Furthermore, Furthermore, the combination of AR2000 and GOD could not only inhibit the production of 1-octen-3-one to weaken the cooked note but also enhance grassy and floral attributes via the increase of aldehydes and alcohols.


Assuntos
Aromatizantes , Odorantes , Prunus persica , Compostos Orgânicos Voláteis , Aromatizantes/química , Aromatizantes/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/enzimologia , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Glucosidases/metabolismo , Metabolômica , Odorantes/análise , Prunus persica/química , Prunus persica/metabolismo , Prunus persica/enzimologia , Paladar , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química
3.
Front Microbiol ; 15: 1368215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605716

RESUMO

Introduction: The cooperation among members of microbial communities based on the exchange of public goods such as 20 protein amino acids (AAs) has attracted widespread attention. However, little is known about how AAs availability affects interactions among members of complex microbial communities and the structure and function of a community. Methods: To investigate this question, trace amounts of AAs combinations with different synthetic costs (low-cost, medium-cost, high-cost, and all 20 AAs) were supplemented separately to acetate-degrading thermophilic methanogenic reactors, and the differences in microbial community structure and co-occurring networks of main members were compared to a control reactor without AA supplementation. Results: The structure of the microbial community and the interaction of community members were influenced by AAs supplementation and the AAs with different synthetic costs had different impacts. The number of nodes, links, positive links, and the average degree of nodes in the co-occurrence network of the microbial communities with AAs supplementation was significantly lower than that of the control without AAs supplementation, especially for all 20 AAs supplementation followed by the medium- and high-cost AAs supplementation. The average proportion of positive interactions of microbial members in the systems supplemented with low-cost, medium-cost, high-cost, all AAs, and the control group were 0.42, 0.38, 0.15, 0.4, and 0.45, respectively. In addition, the ecological functions of community members possibly changed with the supplementation of different cost AAs. Discussion: These findings highlight the effects of AAs availability on the interactions among members of complex microbial communities, as well as on community function.

4.
Environ Res ; 252(Pt 2): 118751, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522738

RESUMO

Haloarchaea with the capacity to degrade alkanes is promising to deal with petroleum pollution in hypersaline environments. However, only a limited number of haloarchaeal species are investigated, and their pathway and mechanism for alkane degradation remain unclear. In this study, Halogranum rubrum RO2-11, a haloarchaeal strain, verified the ability to degrade kerosene and hexadecane in 184 g/L NaCl, with 53% and 52% degradation rates after 9 and 4 days, respectively. Genome sequencing and gene annotation indicated that strain RO2-11 possesses a complete potential alkane-degrading pathway, of which alkane hydroxylases may include CYP450, AlmA, and LadA. Transcriptome and metabolome analyses revealed that the upregulation of related genes in TCA cycle, lysine biosynthesis, and acetylation may help improve hexadecane degradation. Additionally, an alternative degrading pathway of hexadecane based on dual-terminal ß-oxidation may occur in strain RO2-11. It is likely to be the first report of alkane degradation by the genus Halogranum, which may be helpful for applications of oil-pollution bioremediation under high-salt conditions.


Assuntos
Alcanos , Biodegradação Ambiental , Alcanos/metabolismo , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Multiômica
5.
Appl Environ Microbiol ; 90(2): e0109023, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38259075

RESUMO

Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter, Desulfotomaculum, and Thermodesulfovibrio, we identified a number of potential SAOB that are affiliated with Clostridia, Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila. The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.IMPORTANCECombining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes.


Assuntos
Bactérias , Euryarchaeota , Filogenia , Acetatos/metabolismo , Bactérias Anaeróbias/metabolismo , Euryarchaeota/metabolismo , Anaerobiose , Oxirredução , Firmicutes/metabolismo , Metano/metabolismo , Reatores Biológicos/microbiologia
6.
Food Chem ; 439: 138105, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043287

RESUMO

Non-volatiles offer some insight into the formation of aroma-active components in peach puree (PP), but more depth investigation is still needed. Formation pathways of key aroma-active and off-flavor components in PP during thermal concentration (PP + C) and sterilization (PP + C + S) are unclear. Therefore, GC-O-MS combined with UPLC-MS/MS was used to identify the volatile and nonvolatile components and their formation pathways. Among the 36 aroma-active compounds, the contents of γ-decalactone, hexyl acetate, leaf acetate, hexanal, and 1-hexanol (odor activity value ≥ 1) decreased by 46 %, 100 %, 100 %, 92 %, and 100 % between PP and PP + C + S, causing the weakening of "green" and "fruity" attributes. Off-flavor components including 1-octen-3-one, isobutyric acid, isothiazole, and isovaleric acid were identified during thermal processing. 1-Octen-3-one content increased by 75 % from PP to PP + C + S through linolenic acid metabolism, which contributed to "cooked"; the formation of isobutyric and isovaleric acids, isothiazole, resulted in the enhancement of "sour/rancid" via serine and leucine metabolism.


Assuntos
Prunus persica , Compostos Orgânicos Voláteis , Odorantes/análise , Prunus persica/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Acetatos , Compostos Orgânicos Voláteis/metabolismo
7.
Environ Sci Pollut Res Int ; 30(58): 121584-121598, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957495

RESUMO

The effect of microplastics (MPs) retained in waste activated sludge (WAS) on anaerobic digestion (AD) performance has attracted more and more attention. However, their effect on thermophilic AD remains unclear. Here, the influence of polyvinyl chloride (PVC) MPs on methanogenesis and active microbial communities in mesophilic (37 °C) and thermophilic (55 °C) AD was investigated. The results showed that 1, 5, and 10 mg/L PVC MPs significantly promoted the cumulative methane yield in mesophilic AD by 5.62%, 7.36%, and 8.87%, respectively, while PVC MPs reduced that in thermophilic AD by 13.30%, 18.82%, and 19.99%, respectively. Moreover, propionate accumulation was only detected at the end of thermophilic AD with PVC MPs. Microbial community analysis indicated that PVC MPs in mesophilic AD enriched hydrolytic and acidifying bacteria (Candidatus Competibacter, Lentimicrobium, Romboutsia, etc.) together with acetoclastic methanogens (Methanosarcina, Methanosaeta). By contrast, most carbohydrate-hydrolyzing bacteria, propionate-oxidizing bacterium (Pelotomaculum), and Methanosarcina were inhibited by PVC MPs in thermophilic AD. Network analysis further suggested that PVC MPs significantly changed the relationship of key microorganisms in the AD process. A stronger correlation among the above genera occurred in mesophilic AD, which may promote the methanogenic performance. These results suggested that PVC MPs affected mesophilic and thermophilic AD of WAS via changing microbial activities and interaction.


Assuntos
Microplásticos , Esgotos , Esgotos/microbiologia , Anaerobiose , Plásticos , Propionatos , Reatores Biológicos , Bactérias , Metano , Temperatura
8.
Int Microbiol ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010566

RESUMO

Developing microbial consortiums is necessary for microbial enhanced oil recovery (MEOR) in heavy crude oil production. The aqueous phase of produced fluid has long been considered an ideal source of microorganisms for MEOR. However, it is recently found that rich microorganisms (including hydrocarbon-degrading bacteria) are present in the crude oil phase, which is completely different from the aqueous phase of produced fluid. So, in this study, the microbial consortia from the crude oil phase of produced fluids derived from four wells were enriched, respectively. The microbial community structure during passage was dynamically tracked, and the response of enriched consortia to successive disturbance of environmental factors was investigated. The results showed the crude oil phase had high microbial diversity, and the original microbial community structure from four wells was significantly different. After ten generations of consecutive enrichment, different genera were observed in the four enriched microbial consortia, namely, Geobacillus, Bacillus, Brevibacillus, Chelativorans, Ureibacillus, and Ornithinicoccus. In addition, two enriched consortia (eG1614 and eP30) exhibited robustness to temperature and oxygen perturbations. These results further suggested that the crude oil phase of produced fluids can serve as a potential microbial source for MEOR.

9.
Bull Environ Contam Toxicol ; 111(5): 59, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37903975

RESUMO

Vanadium (V) contamination in soil has received extensive attention due to its high toxicity. The change of mobility and bioavailability of soil V and the effects of V on the soil microbial community were studied under conditions of different V(V) spiking concentrations (0, 100, 250, and 500 mg kg-1) and aging time (1, 7, 14, 30, 45, and 60 d). The results showed that soil V mainly presented as V(IV) of all treatments throughout the aging process. At high levels of V(V) loading (250 and 500 mg kg-1), soil V(V) showed a downward trend, while bioavailable V did not change significantly within 60 d's aging. The analysis of soil bacterial community showed that Proteobacteria was the most abundant phylum in all soils, and the dominant genera Sphingomonas and Lysobacter can well adapt to high concentration V. These microorganisms exhibited great potential for bioremediation of V-contaminated soils.


Assuntos
Microbiota , Poluentes do Solo , Vanádio/toxicidade , Vanádio/análise , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Sequenciamento de Nucleotídeos em Larga Escala , Microbiologia do Solo
10.
Environ Sci Pollut Res Int ; 30(49): 108162-108175, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37749471

RESUMO

The metagenomics-based behavior and risk of antibiotic resistance genes (ARGs) were investigated during cattle manure thermophilic anaerobic digestion with tetracycline and copper, namely, bulk-copper oxide, nano-copper oxide, and copper sulfate, which are common feed additives. Although bulk-copper oxide reduced ARGs' diversity, it enriched high-risk ARGs the most than the other two copper species, while copper sulfate could strongly mitigate the ARG risk by decreasing their abundances. Compared to corresponding individual effects, copper and tetracycline combinations may decrease ARGs' co-occurrence potential by 22.0%, and particularly, tetracycline combined separately with copper sulfate and nano-copper oxide reduces the ARGs' risk in abundance (by 7.2%) and human health (by 4.0%). These were mainly driven by bioavailable copper, volatile fatty acids, and pH, as well as the main potential hosts in phyla Firmicutes, Coprothermobacterota, and Euryarchaeota. Notably, the twin risks of pathogenicity and ARGs should be emphasized due to the ARGs' positive correlation with human pathogens of Clostridioides difficile and Arcobacter peruensis. These findings are important for understanding the potential ARGs' risk in treatments of livestock wastes containing feed additives of different sizes and speciation.


Assuntos
Antibacterianos , Esterco , Humanos , Bovinos , Animais , Antibacterianos/farmacologia , Cobre , Sulfato de Cobre , Anaerobiose , Genes Bacterianos , Tetraciclina/farmacologia , Óxidos
11.
Dent Mater J ; 42(5): 624-632, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37612096

RESUMO

The leading cause of guided bone regeneration (GBR) failure is infection. Herein, we developed a new GBR membrane with good mechanical and osteogenic properties by crosslinking the small intestinal submucosa (SIS) with epigallocatechin-3-gallate (EGCG). Meanwhile, EGCG is also a natural antibacterial agent. This study aimed to investigate the antibacterial efficacy of EGCG-crosslinked SIS (E-SIS) against Staphylococcus aureus and Escherichia coli through EGCG release, bacterial count, live/dead staining, scanning electron microscopy, growth curve, and biofilm formation tests. The results showed that E-SIS effectively inhibited bacteria's growth and adhesion, and its antibacterial activity against Staphylococcus aureus was stronger than that against Escherichia coli. 0.5% E-SIS had the most potent antibacterial activity. The antibacterial mechanism of E-SIS might be related to the release of EGCG and the surface properties of E-SIS. In conclusion, 0.5% E-SIS is a promising GBR membrane with good osteogenic and antibacterial properties.


Assuntos
Regeneração Óssea , Catequina , Osteogênese , Catequina/farmacologia , Antibacterianos/farmacologia , Escherichia coli
12.
Front Public Health ; 11: 1150333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441635

RESUMO

Background: Falls are serious health events that can cause life-threatening injuries, especially among specific populations. This study assessed the risk factors associated with falls among inpatients with hematological diseases and explored the predictive value of fall risk assessment models. Methods: Clinical data from 275 eligible hematology disease patients who visited Mianyang Central Hospital with or without falls from September 2019 to August 2022 were retrospectively analyzed. Fall risk scores were determined in all included patients. Clinical characteristics were compared between patients with and without falls. Binary logistic regression models were used to screen for potential fall-specific risk factors among hospitalized patients with hematology diseases. Results: Falls occurred in 79 cases. Patients in the fall group had a higher Charlson Comorbidity Index (CCI), a higher incidence of diabetes mellitus, visual impairment, hematological malignancies, and maintenance of stable disease stage, higher glucose levels, and a greater proportion of dizziness, nocturnal defecation, and receipt of intensive chemotherapy than those in the non-fall group (all P < 0.05). Fall patients were also more likely to have used diuretics, laxatives, sedative-sleeping drugs, analgesics, albumin, and calcium, and to have had catheters placed. The Barthel Index, grade of nursing care, support of chaperones, body temperature, nutrition score, and pain score also differed significantly between the two groups (all P < 0.05). Multivariable logistic regression analysis showed that the maintenance of stable disease stage (OR = 4.40, 95% CI 2.11-9.18, P < 0.001), use of sedative and sleeping drugs (OR = 4.84, 95% CI 1.09-21.49, P = 0.038), use of diuretics (OR = 5.23, 95% CI 2.40-11.41, P < 0.001), and intensive chemotherapy (OR = 10.41, 95% CI 3.11-34.87, P < 0.001) were independent risk factors for falls. A high Barthel Index (OR = 0.95, 95% CI 0.93-0.97, P < 0.001), a high level of nursing care (OR = 0.19, 95% CI 0.04-0.98, P = 0.047), and availability of family accompaniment (OR = 0.15, 95% CI 0.06-0.34, P < 0.001) were protective factors for falls. A ROC curve analysis was used to evaluate the predictive value of different fall-specific risk scales among inpatients with hematological diseases. The Johns Hopkins Fall Risk Rating Scale had high sensibility and specificity with an area under the curve of 0.73 (95% CI 0.66-0.80, P < 0.001). Conclusion: The Johns Hopkins Fall Risk Scale had a strong predictive value for falls among hospitalized patients with hematology diseases and can be recommended as a valid tool for clinical use.


Assuntos
Doenças Hematológicas , Pacientes Internados , Humanos , Estudos Retrospectivos , Fatores de Risco , Hipnóticos e Sedativos
13.
Food Res Int ; 170: 113050, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316031

RESUMO

Changes in carotenoids and volatiles (including ß-carotene-metabolites) of freeze-dried carrots (FDC) treated by thermal/nonthermal-ultrasound (40 KHz, 10 min) and ascorbic (2%, w/v)-CaCl2 (1%, w/v) solution ((H)UAA-CaCl2) during a 120-day storage period were investigated. The results of HS-SPME/GC-MS showed that caryophyllene was the dominant volatile compound (70.80-275.74 µg/g, d.b) in FDC, and 144 volatile compounds were detected in 6 samples. Besides, 23 volatile compounds were significantly correlated with ß-carotene content (p < 0.05), and ß-carotene degraded to off-flavor compounds (ß-ionone: 22.85-117.26 µg/g, ß-cyclocitral: 0-113.84 µg/g and dihydroactindiolide: 4.04-128.37 µg/g) that had adverse effects on FDC flavor. However, UAA-CaCl2 effectively preserved the total carotenoid content (793.37 µg/g), and HUAA-CaCl2 reduced the off-odors (such as ß-cyclocitral and isothymol) formation at the end of storage. These results indicated that (H)UAA-CaCl2 treatments were conducive to the maintenance of carotenoids and the flavor quality of FDC.


Assuntos
Carotenoides , Daucus carota , beta Caroteno , Cloreto de Cálcio
14.
Bioresour Technol ; 373: 128732, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36774986

RESUMO

To explore an effective decentralized kitchen waste (KW) treatment system, the performance and bacterial community succession of thermophilic semi-continuous composting (TSC) of KW followed by static stacking (SS) was studied. A daily feeding ratio of 10% ensured stable performance of TSC using an integrated automatic reactor; the efficiencies of organic matter degradation and seed germination index (GI) reached 80.88% and 78.51%, respectively. SS for seven days further promoted the quality of the compost by improving the GI to 91.58%. Alpha- and beta-diversity analyses revealed significant differences between the bacterial communities of TSC and SS. Firmicutes, Actinobacteria, Chloroflexi, Gemmatimonadetes, and Myxococcota were dominant during the TSC of KW, whereas the members of Proteobacteria and Bacteroidetes responsible for product maturity rapidly proliferated during the subsequent SS and ultimately dominated the compost with Firmicutes and Actinobacteria. These results provide new perspectives for decentralized KW treatment using TSC for practical applications.


Assuntos
Compostagem , Solo , Fertilizantes , Bactérias , Firmicutes , Esterco/microbiologia
15.
Food Chem ; 410: 135368, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608556

RESUMO

To understand the evolution of aroma in jujubes during dynamic freeze drying (FD), the relationship between aroma compounds, precursors, and related enzyme activities were analyzed. Fifty-three volatiles were identified during FD processing. After FD, the total aroma contents were increased from 11,004 to 14,603 µg/kg, ketones content was significantly decreased by 54.11 %, resulted in the loss of creamy note in freeze-dried jujube (FDJ). Through the network analysis, serine, glycine, proline, valine, cysteine, arginine, glutamic acid, lysine and leucine had the significant correlation with pyrazines, dominated the roasty note of FDJ. Linoleic acid, α-linolenic acid and oleic acid with lipoxygenase had important effects on the increase of esters (from 412 to 9,486 µg/kg), contributed fruity and sweet notes of FDJ. Besides, through the Mantel test, the influence degree of factors on the formation of FDJ aroma was ranked as temperature > enzyme activity > fatty acids > amino acids.


Assuntos
Compostos Orgânicos Voláteis , Ziziphus , Ziziphus/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Liofilização , Frutas/química , Aminoácidos/análise , Odorantes/análise , Compostos Orgânicos Voláteis/análise
16.
Curr Microbiol ; 80(2): 70, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609874

RESUMO

Microbes use both organic and inorganic compounds as electron donors, with different electronic potentials, to produce energy required for growth in environments. Conventional studies on the effects of different electron donors on microbial community has been extensively studied with a set cathode potential. However, it remains under-researched how a microbial community response to the different redox potentials in different environments. Here, we incubated a lake sediment in a single-chamber reactor equipped with three working electrodes, i.e., with potentials of - 0.29 V, - 0.05 V versus standard hydrogen electrode and open-circuit, respectively. Results reveal that the structure of bacterial communities was highly similar for all closed-circuit electrodes (- 0.29 V, - 0.05 V), while differing significantly from those on open-circuit electrodes. We also show that specific bacteria were preferentially enriched by different electrode potentials, i.e., Pseudomonas and Rhodobacter preferentially grew on - 0.05 V and - 0.29 V cathode potentials, Azospirillum and Bosea preferentially grew on - 0.05 V; while Ferrovibrio, Hydrogenophaga, Delftia, and Sphingobium preferentially grew on - 0.29 V. In addition, microorganisms selectively enriched on open-circuit electrodes possess higher connectivity and closer relationship than microorganisms selectively enriched on closed-circuit electrode.


Assuntos
Fontes de Energia Bioelétrica , Microbiota , Fontes de Energia Bioelétrica/microbiologia , Bactérias/genética , Eletrodos
17.
Bioresour Technol ; 369: 128462, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36503087

RESUMO

This study evaluated the compostability of rice straw as the main feedstock (75 % in dry weight), supplemented with three different nitrogen-rich wastes, namely food waste (FW), dairy manure (DM), and sewage sludge (SS). Organic matter (OM) degradation, maturity and fertility of the end-product, and bacterial community structure during the composting processes were compared. All composting processes generated mature end-product within 51 days. Notably, FW addition was more effective to accelerate rice straw OM degradation and significantly improved end-product fertility with a high yield of Chinese cabbage. The succession of the bacterial community was accelerated with FW supplementation. Genera Geobacillus, Chryseolinea, and Blastocatella were significantly enriched during the composting of rice straw with FW supplementation. Finally, temperature, total nitrogen, moisture, pH, and total carbon were the key factors affecting microorganisms. This study provides a promising alternative method to enhance the disposal of larger amounts of rice straw in a shorter time.


Assuntos
Compostagem , Oryza , Eliminação de Resíduos , Nitrogênio/metabolismo , Oryza/metabolismo , Solo/química , Bactérias/metabolismo , Esterco/microbiologia , Suplementos Nutricionais , Esgotos
18.
Environ Res ; 218: 114783, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372150

RESUMO

Fluctuation disturbance of organic loading rate (OLR) is common in actual anaerobic digestion (AD), but its effects on AD of municipal sludge gets little attention. This study investigated the responses of reactor performance and active microbial community in mesophilic and thermophilic AD of municipal sludge before, during and after OLR periodic fluctuation disturbance. The performance of both reactors were similar before and after disturbance although some parameter values changed during the disturbance, which indicated their enough buffer capacity to OLR periodic fluctuation. Different microbial community at RNA level was observed in the two reactors. When the OLR disturbance commenced, the microbial community changed greatly in thermophilic AD. Error and attack tolerance of the microbial network was analyzed in order to learn the response mechanisms to OLR disturbance. The results assisted that the thermophilic microbial community was more vulnerable, but the reactor performance of which could be maintained using the functional redundancy strategy under OLR fluctuation disturbance.


Assuntos
Microbiota , Esgotos , Anaerobiose , Reatores Biológicos , Metano , Temperatura
19.
Phys Rev E ; 105(6-1): 064308, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854560

RESUMO

Medical resources are crucial in mitigating epidemics, especially during pandemics such as the ongoing COVID-19. Thereby, reasonable resource deployment inevitably plays a significant role in suppressing the epidemic under limited resources. When an epidemic breaks out, people can produce resources for self-protection or donate resources to help others for treatment. That is, the exchange of resources also affects the transmission between individuals, thus, altering the epidemic dynamics. To understand factors on resource deployment and the interplay between resource and transmission we construct a metapopulation network model with resource allocation. Our results indicate actively or promptly donating resources is not helpful to suppress the epidemic under both homogeneous population distribution and heterogeneous population distribution. Besides, strengthening the speed of resources production can significantly increase the recovery rate so that they reduce the final outbreak size. These results may provide policy guidance toward epidemic containment.

20.
J Appl Microbiol ; 133(2): 842-856, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35490352

RESUMO

AIMS: The aim was to characterize indigenous micro-organisms in oil reservoirs after polymer flooding (RAPF). METHODS: The microbial communities in the crude oil phase (Oil) and in the filter-graded aqueous phases Aqu0.22 (>0.22 µm) and Aqu0.1 (0.1-0.22 µm) were investigated by 16S rRNA gene high-throughput sequencing. RESULTS: Indigenous micro-organisms related to hydrocarbon degradation prevailed in the three phases of each well. However, obvious differences in bacterial compositions were observed amongst the three phases of the same well and amongst the same phase of different wells. The crude oil and Aqu0.22 shared many dominant bacteria. Aqu0.1 contained a unique bacterial community in each well. Most bacteria in Aqu0.1 were affiliated to culturable genera, suggesting that they may adapt to the oil reservoir environment by reduction of cell size. Contrary to the bacterial genera, archaeal genera were similar in the three phases but varied in relative abundances. The observed microbial differences may be driven by specific environmental factors in each oil well. CONCLUSIONS: The results suggest an application potential of microbial enhanced oil recovery (MEOR) technology in RAPF. The crude oil and Aqu0.1 contain many different functional micro-organisms related to hydrocarbon degradation. Both should not be overlooked when investing and exploring the indigenous micro-organisms for MEOR. SIGNIFICANCE AND IMPACT OF THE STUDY: This work facilitates the understanding of microbial community structures in RAPF and provides information for microbial control in oil fields.


Assuntos
Microbiota , Petróleo , Bactérias/genética , Hidrocarbonetos , Microbiota/genética , Campos de Petróleo e Gás , Polímeros , RNA Ribossômico 16S/genética , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...