Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag Res ; : 734242X241237197, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38628082

RESUMO

Even though carbon fibres (CFs) have been increasingly used, their end-of-life (EOL) handling presents a challenge. To address this issue, we evaluated the use of recycled CFs (rCFs), produced through pyrolysis, as rovings to be used in textile reinforced concrete structures. Mechanical processing (hammer mill) with varying machine settings was then used to assess EOL handling, considering the separation potential of rCFs and the length of separated rCFs. The results showed that rCF rovings can be separated from concrete with an average of 87 wt.-%, whereas the highest rCF length and separation yield were observed in different machine settings. In addition, a techno-environmental assessment on the mechanical process was performed to compare different machine settings. The machine settings with the highest yield of rCF rovings also had the highest fine fraction that cannot be further separated. Furthermore, life cycle assessment (LCA) was conducted covering three life cycles of CFs and an additional LCA for comparing rCF with virgin CF. LCA results revealed that CF reinforced plastic and concrete productions are the two main contributors to environmental impacts. The comparative LCA between virgin CF and rCF also showed that using rCF is environmentally advantageous, as virgin CF production causes 230% more global warming potential compared to rCF. Future studies assessing different allocation approaches, quantifying the quality of rCF, and its inclusion in LCA are relevant.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38315312

RESUMO

PURPOSE: Altered hemodynamics caused by the presence of an endovascular device may undermine the success of peripheral stenting procedures. Flow-enhanced stent designs are under investigation to recover physiological blood flow patterns in the treated artery and reduce long-term complications. However, flow-enhanced designs require the development of customised manufacturing processes that consider the complex behaviour of Nickel-Titanium (Ni-Ti). While the manufacturing routes of traditional self-expanding Ni-Ti stents are well-established, the process to introduce alternative stent designs is rarely reported in the literature, with much of this information (especially related to shape-setting step) being commercially sensitive and not reaching the public domain, as yet. METHODS: A reliable manufacturing method was developed and improved to induce a helical ridge onto laser-cut and wire-braided Nickel-Titanium self-expanding stents. The process consisted of fastening the stent into a custom-built fixture that provided the helical shape, which was followed by a shape-setting in air furnace and rapid quenching in cold water. The parameters employed for the shape-setting in air furnace were thoroughly explored, and their effects assessed in terms of the mechanical performance of the device, material transformation temperatures and surface finishing. RESULTS: Both stents were successfully imparted with a helical ridge and the optimal heat treatment parameters combination was found. The settings of 500 °C/30 min provided mechanical properties comparable with the original design, and transformation temperatures suitable for stenting applications (Af = 23.5 °C). Microscopy analysis confirmed that the manufacturing process did not alter the surface finishing. Deliverability testing showed the helical device could be loaded onto a catheter delivery system and deployed with full recovery of the expanded helical configuration. CONCLUSION: This demonstrates the feasibility of an additional heat treatment regime to allow for helical shape-setting of laser-cut and wire-braided devices that may be applied to further designs.

3.
J Am Chem Soc ; 146(7): 4642-4651, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335142

RESUMO

Here, we report a detailed surface analysis of dry- and ambient air-annealed CsPbI3 films and their subsequent modified interfaces in perovskite solar cells. We revealed that annealing in ambient air does not adversely affect the optoelectronic properties of the semiconducting film; instead, ambient air-annealed samples undergo a surface modification, causing an enhancement of band bending, as determined by hard X-ray photoelectron spectroscopy measurements. We observe interface charge carrier dynamics changes, improving the charge carrier extraction in CsPbI3 perovskite solar cells. Optical spectroscopic measurements show that trap state density is decreased due to ambient air annealing. As a result, air-annealed CsPbI3-based n-i-p structure devices achieved a 19.8% power conversion efficiency with a 1.23 V open circuit voltage.

4.
Polymers (Basel) ; 16(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399866

RESUMO

The use of tissue engineering to address the shortcomings of current procedures for tendons and ligaments is promising, but it requires a suitable scaffold that meets various mechanical, degradation-related, scalability-related, and biological requirements. Macroporous textile scaffolds made from appropriate fiber material have the potential to fulfill the first three requirements. This study aimed to investigate the biocompatibility, sterilizability, and functionalizability of a multilayer braided scaffold. These macroporous scaffolds with dimensions similar to those of the human anterior cruciate ligament consist of fibers with appropriate tensile strength and degradation behavior melt-spun from Polycaprolactone (PCL). Two different cross-sectional geometries resulting in significantly different specific surface areas and morphologies were used at the fiber level, and a Chitosan-graft-PCL (CS-g-PCL) surface modification was applied to the melt-spun substrates for the first time. All scaffolds elicited a positive cell response, and the CS-g-PCL modification provided a platform for incorporating functionalization agents such as drug delivery systems for growth factors, which were successfully released in therapeutically effective quantities. The fiber geometry was found to be a variable that could be manipulated to control the amount released. Therefore, scaled, surface-modified textile scaffolds are a versatile technology that can successfully address the complex requirements of tissue engineering for ligaments and tendons, as well as other structures.

5.
Nanoscale ; 16(5): 2289-2294, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38164662

RESUMO

Control of the optical properties of a nanoparticle (NP) through its structural changes underlies optical data processing, dynamic coloring, and smart sensing at the nanometer scale. Here, we report on the concept of controlling the light scattering by a NP through mixing of weakly miscible chemical elements (Fe and Au), supporting a thermal-induced phase transformation. The transformation corresponds to the transition from a homogeneous metastable solid solution phase of the (Fe,Au) NP towards an equilibrium biphasic Janus-type NP. We demonstrate that the phase transformation is thermally activated by laser heating up to a threshold of 800 °C (for NPs with a size of hundreds of nm), leading to the associated changes in the light scattering and color of the NP. The results thereby pave the way for the implementation of optical sensors triggered by a high temperature at the nanometer scale via NPs based on metal alloys.

6.
Nat Commun ; 15(1): 316, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182589

RESUMO

The knowledge of minority and majority charge carrier properties enables controlling the performance of solar cells, transistors, detectors, sensors, and LEDs. Here, we developed the constant light induced magneto transport method which resolves electron and hole mobility, lifetime, diffusion coefficient and length, and quasi-Fermi level splitting. We demonstrate the implication of the constant light induced magneto transport for silicon and metal halide perovskite films. We resolve the transport properties of electrons and holes predicting the material's effectiveness for solar cell application without making the full device. The accessibility of fourteen material parameters paves the way for in-depth exploration of causal mechanisms limiting the efficiency and functionality of material structures. To demonstrate broad applicability, we further characterized twelve materials with drift mobilities spanning from 10-3 to 103 cm2V-1s-1 and lifetimes varying between 10-9 and 10-3 seconds. The universality of our method its potential to advance optoelectronic devices in various technological fields.

7.
Nanomaterials (Basel) ; 13(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37947733

RESUMO

I-III-VI2 group quantum dots (QDs) have attracted high attention in photoelectronic conversion applications, especially for QD-sensitized solar cells (QDSSCs). This group of QDs has become the mainstream light-harvesting material in QDSSCs due to the ability to tune their electronic properties through size, shape, and composition and the ability to assemble the nanocrystals on the surface of TiO2. Moreover, these nanocrystals can be produced relatively easily via cost-effective solution-based synthetic methods and are composed of low-toxicity elements, which favors their integration into the market. This review describes the methods developed to prepare I-III-VI2 QDs (AgInS2 and CuInS2 were excluded) and control their optoelectronic properties to favor their integration into QDSSCs. Strategies developed to broaden the optoelectronic response and decrease the surface-defect states of QDs in order to promote the fast electron injection from QDs into TiO2 and achieve highly efficient QDSSCs will be described. Results show that heterostructures obtained after the sensitization of TiO2 with I-III-VI2 QDs could outperform those of other QDSSCs. The highest power-conversion efficiency (15.2%) was obtained for quinary Cu-In-Zn-Se-S QDs, along with a short-circuit density (JSC) of 26.30 mA·cm-2, an open-circuit voltage (VOC) of 802 mV and a fill factor (FF) of 71%.

8.
ACS Energy Lett ; 8(10): 4304-4314, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854052

RESUMO

In perovskite solar cells (PSCs) energy level alignment and charge extraction at the interfaces are the essential factors directly affecting the device performance. In this work, we present a modified interface between all-inorganic CsPbI3 perovskite and its hole-selective contact (spiro-OMeTAD), realized by the dipole molecule trioctylphosphine oxide (TOPO), to align the energy levels. On a passivated perovskite film, with n-octylammonium iodide (OAI), we created an upward surface band-bending at the interface by TOPO treatment. This improved interface by the dipole molecule induces a better energy level alignment and enhances the charge extraction of holes from the perovskite layer to the hole transport material. Consequently, a Voc of 1.2 V and a high-power conversion efficiency (PCE) of over 19% were achieved for inorganic CsPbI3 perovskite solar cells. Further, to demonstrate the effect of the TOPO dipole molecule, we present a layer-by-layer charge extraction study by a transient surface photovoltage (trSPV) technique accomplished by a charge transport simulation.

9.
J Control Release ; 363: 376-388, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734672

RESUMO

Polyurethanes are a versatile and highly tunable class of materials that possess unique properties including high tensile strength, abrasion and fatigue resistance, and flexibility at low temperatures. The tunability of polyurethane properties has allowed this class of polymers to become ubiquitous in our daily lives in fields as diverse as apparel, appliances, construction, and the automotive industry. Additionally, polyurethanes with excellent biocompatibility and hemocompatibility can be synthesized, enabling their use as biomaterials in the medical field. The tunable nature of polyurethane biomaterials also makes them excellent candidates as drug delivery vehicles, which is the focus of this review. The fundamental idea we aim to highlight in this article is the structure-property-function relationships found in polyurethane systems. Specifically, the chemical structure of the polymer determines its macroscopic properties and dictates the functions for which it will perform well. By exploring the structure-property-function relationships for polyurethanes, we aim to elucidate the fundamental properties that can be tailored to achieve controlled drug release and empower researchers to design new polyurethane systems for future drug delivery applications.


Assuntos
Materiais Biocompatíveis , Poliuretanos , Materiais Biocompatíveis/química , Poliuretanos/química , Sistemas de Liberação de Medicamentos , Polímeros/química
10.
Comput Methods Programs Biomed ; 242: 107781, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37683458

RESUMO

BACKGROUND AND OBJECTIVES: Bioresorbable braided stents, typically made of bioresorbable polymers such as poly-l-lactide (PLLA), have great potential in the treatment of critical limb ischemia, particularly in cases of long-segment occlusions and lesions with high angulation. However, the successful adoption of these devices is limited by their low radial stiffness and reduced elastic modulus of bioresorbable polymers. This study proposes a computational optimization procedure to enhance the mechanical performance of bioresorbable braided stents and consequently improve the treatment of critical limb ischemia. METHODS: Finite element analyses were performed to replicate the radial crimping test and investigate the implantation procedure of PLLA braided stents. The stent geometry was characterized by four design parameters: number of wires, wire diameter, initial stent diameter, and braiding angle. Manufacturing constraints were considered to establish the design space. The mechanical performance of the stent was evaluated by defining the radial force, foreshortening, and peak maximum principal stress of the stent as objectives and constraint functions in the optimization problem. An approximate relationship between the objectives, constraint, and the design parameters was defined using design of experiment coupled with surrogate modelling. Surrogate models were then interrogated within the design space, and a multi-objective design optimization was conducted. RESULTS: The simulation of radial crimping was successfully validated against experimental data. The radial force was found to be primarily influenced by the number of wires, wire diameter, and braiding angle, with the wire diameter having the most significant impact. Foreshortening was predominantly affected by the braiding angle. The peak maximum principal stress exhibited contrasting behaviour compared to the radial force for all parameters, with the exception of the number of wires. Among the Pareto-optimal design candidates, feasible peak maximum principal stress values were observed, with the braiding angle identified as the differentiating factor among these candidates. CONCLUSIONS: The exploration of the design space enabled both the understanding of the impact of design parameters on the mechanical performance of bioresorbable braided stents and the successful identification of optimal design candidates. The optimization framework contributes to the advancement of innovative bioresorbable braided stents for the effective treatment of critical limb ischemia.


Assuntos
Implantes Absorvíveis , Isquemia Crônica Crítica de Membro , Humanos , Estresse Mecânico , Stents , Polímeros , Desenho de Prótese
11.
Sensors (Basel) ; 23(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37430514

RESUMO

This study investigated the ability of electrically conductive carbon rovings to detect cracks in textile-reinforced concrete (TRC) structures. The key innovation lies in the integration of carbon rovings into the reinforcing textile, which not only contributes to the mechanical properties of the concrete structure but also eliminates the need for an additional sensory system, such as strain gauges, to monitor the structural health. Carbon rovings are integrated into a grid-like textile reinforcement that differs in binding type and dispersion concentration of the styrene butadiene rubber (SBR) coating. Ninety final samples were subjected to a four-point bending test in which the electrical changes of the carbon rovings were measured simultaneously to capture the strain. The mechanical results show that the SBR50-coated TRC samples with circular and elliptical cross-sectional shape achieved, with 1.55 kN, the highest bending tensile strength, which is also captured with a value of 0.65 Ω by the electrical impedance monitoring. The elongation and fracture of the rovings have a significant effect on the impedance mainly due to electrical resistance change. A correlation was found between the impedance change, binding type and coating. This suggests that the elongation and fracture mechanisms are affected by the number of outer and inner filaments, as well as the coating.

12.
Adv Mater ; 35(42): e2304150, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37463023

RESUMO

Inorganic metal halide perovskites such as CsPbI3 are promising for high-performance, reproducible, and robust solar cells. However, inorganic perovskites are sensitive to humidity, which causes the transformation from the black phase to the yellow δ, non-perovskite phase. Such phase instability has been a significant challenge to long-term operational stability. Here, a surface dimensionality reduction strategy is reported, using 2-(4-aminophenyl)ethylamine cation to construct a Dion-Jacobson 2D phase that covers the surface of the 3D inorganic perovskite structure. The Dion-Jacobson layer mainly grows at the grain boundaries of the perovskite, effectively passivating surface defects and providing favourable interfacial charge transfer. The resulting inorganic perovskite films exhibit excellent humidity resistance when submerged in an aqueous solution (isopropanol:water = 4:1 v/v) and exposed to a 50% humidity air atmosphere. The Dion-Jacobson 2D/3D inorganic perovskite solar cell (PSC) achieves a power conversion efficiency (PCE) of 19.5% with a Voc of 1.197 eV. It retains 83% of its initial PCE after 1260 h of maximum power point tracking under 1.2 sun illumination. The work demonstrates an effective way for stabilizing efficient inorganic perovskite solar cells.

13.
Int J Health Econ Manag ; 23(4): 585-607, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37103662

RESUMO

The ability of various policy activities to reduce the reproduction rate of the COVID-19 disease is widely discussed. Using a stringency index that comprises a variety of lockdown levels, such as school and workplace closures, we analyze the effectiveness of government restrictions. At the same time, we investigate the capacity of a range of lockdown measures to lower the reproduction rate by considering vaccination rates and testing strategies. By including all three components in an SIR (Susceptible, Infected, Recovery) model, we show that a general and comprehensive test strategy is instrumental in reducing the spread of COVID-19. The empirical study demonstrates that testing and isolation represent a highly effective and preferable approach towards overcoming the pandemic, in particular until vaccination rates have risen to the point of herd immunity.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Controle de Doenças Transmissíveis
14.
Bioinspir Biomim ; 18(3)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36881911

RESUMO

Certain superhydrophobic plants, such asSalvinia molesta, are able to adsorb oil films from water surfaces and thus separate the oil from the water. There are first attempts to transfer this phenomenon to technical surfaces, but the functional principle and the influence of certain parameters are not yet fully understood. The aim of this work is to understand the interaction behavior between biological surfaces and oil, and to define design parameters for transferring the biological model to a technical textile. This will reduce the development time of a biologically inspired textile. For this purpose, the biological surface is transferred into a 2D model and the horizontal oil transport is simulated in Ansys Fluent. From these simulations, the influence of contact angle, oil viscosity and fiber spacing/diameter ratio was quantified. The simulation results were verified with transport tests on spacer fabrics and 3D prints. The values obtained serve as a starting point for the development of a bio-inspired textile for the removal of oil spills on water surfaces. Such a bio-inspired textile provides the basis for a novel method of oil-water separation that does not require the use of chemicals or energy. As a result, it offers great added value compared to existing methods.


Assuntos
Biônica , Têxteis , Água/química , Simulação por Computador
15.
Biosensors (Basel) ; 13(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36979606

RESUMO

Clot formation inside a membrane oxygenator (MO) due to blood-to-foreign surface interaction represents a frequent complication during extracorporeal membrane oxygenation. Since current standard monitoring methods of coagulation status inside the MO fail to detect clot formation at an early stage, reliable sensors for early clot detection are in demand to reduce associated complications and adverse events. Bioimpedance analysis offers a monitoring concept by integrating sensor fibers into the MO. Herein, the feasibility of clot detection via bioimpedance analysis is evaluated. A custom-made test chamber with integrated titanium fibers acting as sensors was perfused with heparinized human whole blood in an in vitro test circuit until clot formation occurred. The clot detection capability of bioimpedance analysis was directly compared to the pressure difference across the test chamber (ΔP-TC), analogous to the measurement across MOs (ΔP-MO), the clinical gold standard for clot detection. We found that bioimpedance measurement increased significantly 8 min prior to a significant increase in ΔP-TC, indicating fulminant clot formation. Experiments without clot formation resulted in a lack of increase in bioimpedance or ΔP-TC. This study shows that clot detection via bioimpedance analysis under flow conditions in a blood-perfused test chamber is generally feasible, thus paving the way for further investigation.


Assuntos
Oxigenação por Membrana Extracorpórea , Trombose , Humanos , Trombose/diagnóstico , Trombose/etiologia , Oxigenadores de Membrana/efeitos adversos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Oxigenação por Membrana Extracorpórea/métodos , Coagulação Sanguínea , Pressão
16.
J Mech Behav Biomed Mater ; 138: 105568, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459705

RESUMO

Much of our current understanding of the performance of self-expanding wire-braided stents is based on mechanical testing of Nitinol-based or polymeric non-bioresorbable (e.g. PET, PP etc.) devices. The small amount of data present for bioresorbable devices characterizes stents with big nominal diameters (D>6mm), with a distinct lack of data describing the mechanical performance of small-diameter wire-braided bioresorbable devices (D≤5mm). This study presents a systematic investigation of the mechanical performance of wire-braided bioresorbable Poly-L-Lactic Acid (PLLA) stents having different braiding angles (α=45° , α=30°, and α=20°), wire diameters (d=100µm, and d=150µm), wire count (n=24 and n=48), braiding patterns (1:1-1, 2:2-1 and 1:1-2) and stent diameters (D=5mm, D=4mm, and D=2.5mm). Mechanical characterisation was carried out by evaluating the radial, longitudinal and bending response of the devices. Our results showed that smaller braid angles, larger wire diameters, higher number of wires and smaller stent diameter led to an increase in the stent mechanical properties across each of the three mechanical tests performed. It was found that geometrical features of a polymeric braided stent could be adapted to achieve a similar performance to the one of a metallic device. In particular, substantial increases in stent mechanical properties were found for a low braiding angle and when the braiding pattern followed a one-over-one-under configuration with two wires in parallel (1:1-2). Finally, it was shown that a mathematical model proposed in literature for metal braided stents can provide reasonable predictions also of polymeric stent performance but just in circumstances where wire friction does not have a dominant role. This study presents a wide range of experimental data that can provide an important reference for further development of wire-braided bioresorbable devices.


Assuntos
Poliésteres , Stents , Modelos Teóricos , Polímeros
17.
J Funct Biomater ; 13(4)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36412872

RESUMO

The anterior cruciate ligament (ACL) is the most commonly injured intra-articular ligament of the knee. Due to its limited intrinsical healing potential and vascularization, injuries of the ACL do not heal satisfactorily, and surgical intervention is usually required. The limitations of existing reconstructive grafts and autologous transplants have prompted interest in tissue-engineered solutions. A tissue engineering scaffold for ACL reconstruction must be able to mimic the mechanical properties of the native ligament, provide sufficient porosity to promote cell growth of the neoligament tissue, and be biodegradable. This study investigates long-term biodegradable poly-ε-caprolactone (PCL)-based scaffolds for ACL replacement using the 3D hexagonal braiding technique. The scaffolds were characterized mechanically as well as morphologically. All scaffolds, regardless of their braid geometry, achieved the maximum tensile load of the native ACL. The diameter of all scaffolds was lower than that of the native ligament, making the scaffolds implantable with established surgical methods. The 3D hexagonal braiding technique offers a high degree of geometrical freedom and, thus, the possibility to develop novel scaffold architectures. Based on the findings of this study, the 3D-braided PCL-based scaffolds studied were found to be a promising construct for tissue engineering of the anterior cruciate ligament.

18.
Front Bioeng Biotechnol ; 10: 988533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213079

RESUMO

Chronic venous insufficiency (CVI) is a leading vascular disease whose clinical manifestations include varicose veins, edemas, venous ulcers, and venous hypertension, among others. Therapies targeting this medical issue are scarce, and so far, no single venous valve prosthesis is clinically available. Herein, we have designed a bi-leaflet transcatheter venous valve that consists of (i) elastin-like recombinamers, (ii) a textile mesh reinforcement, and (iii) a bioabsorbable magnesium stent structure. Mechanical characterization of the resulting biohybrid elastin-like venous valves (EVV) showed an anisotropic behavior equivalent to the native bovine saphenous vein valves and mechanical strength suitable for vascular implantation. The EVV also featured minimal hemolysis and platelet adhesion, besides actively supporting endothelialization in vitro, thus setting the basis for its application as an in situ tissue engineering implant. In addition, the hydrodynamic testing in a pulsatile bioreactor demonstrated excellent hemodynamic valve performance, with minimal regurgitation (<10%) and pressure drop (<5 mmHg). No stagnation points were detected and an in vitro simulated transcatheter delivery showed the ability of the venous valve to withstand the implantation procedure. These results present a promising concept of a biohybrid transcatheter venous valve as an off-the-shelf implant, with great potential to provide clinical solutions for CVI treatment.

19.
Biomedicines ; 10(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35740316

RESUMO

(1) Introduction: The intraperitoneal onlay mesh technique (IPOM) is widely used to repair incisional hernias. This method has advantages but suffers from complications due to intraperitoneal adhesion formation between the mesh and intestine. An ideal mesh minimizes adhesions and shows good biocompatibility. To address this, newly developed multifilamentous polyethylene (PET) meshes were constructed from sub-macrophage-sized monofilaments and studied regarding biocompatibility and adhesion formation. (2) Methods: We investigated fine (FPET, 72 filaments, 11 µm diameter each) and ultra-fine multifilament (UFPET, 700 filaments, 3 µm diameter each) polyethylene meshes for biocompatibility in subcutaneous implantation in rats. Adhesion formation was analyzed in the IPOM position in rabbits. Geometrically identical mono-filamentous polypropylene (PP) Bard Soft® PP meshes were used for comparison. Histologic and immune-histologic foreign body reactions were assessed in 48 rats after 7 or 21 days (four mesh types, with two different mesh types per rat; n = 6 per mesh type). Additionally, two different mesh types each were placed in the IPOM position in 24 rabbits to compile the Diamond peritoneal adhesion score after the same timeframes. The biocompatibility and adhesion score differences were analyzed with the Kruskal-Wallis nonparametric statistical test. (3) Results: Overall, FPET and, especially, UFPET showed significantly smaller foreign body granulomas compared to PP meshes. Longer observation periods enhanced the differences. Immunohistology showed no significant differences in the cellular immune response and proliferation. UFPET demonstrated significantly reduced peritoneal adhesion formation compared to all other tested meshes after 21 days. (4) Conclusions: Overall, FPET and, especially, UFPET demonstrated their suitability for IPOM hernia meshes in animal models by improving major aspects of the foreign body reaction and reducing adhesion formation.

20.
Biomater Sci ; 10(14): 3793-3807, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35642617

RESUMO

Three-dimensional bioabsorbable textiles represent a novel technology for the manufacturing of tissue engineering scaffolds. In the present study, 3D bioabsorbable poly(lactic acid) (PLA) spacer fabric scaffolds are fabricated by warp-knitting and their potential for tissue engineering is explored in vitro. Changes in physical properties and mechanical performance with different heat setting treatments are assessed. To characterize the microenvironment experienced by cells in the scaffolds, yarn properties are investigated prior to, and during, hydrolytic degradation. The differences in yarn morphology, thermal properties, infrared spectra, and mechanical properties are investigated and monitored during temperature accelerated in vitro degradation tests in phosphate buffered saline (PBS) solution at 58 °C and pH 7.4 for 55 days. Yarn and textile cytocompatibility are tested to assess the effect of materials employed, manufacturing conditions, post processing and sterilization on cell viability, together with the cytocompatibility of the textile degradation products. Results show that the heat setting process can be used to modify scaffold properties, such as thickness, porosity, pore size and stiffness within the range useful for tissue regeneration. Scaffold degradation rate in physiological conditions is estimated by comparing yarn degradation data with PLA degradation data from literature. This will potentially allow the prediction of scaffold mechanical stability in the long term and thus its suitability for the remodelling of different tissues. Mouse calvaria preosteoblast MC3T3-E1 cells attachment and proliferation are observed on the scaffold over 12 days of in vitro culture by 4',6-diamidino-2-phenylindole (DAPI) fluorescent staining and DNA quantification. The present work shows the potential of spacer fabric scaffolds as a versatile and scalable scaffold fabrication technique, having the ability to create a microenvironment with appropriate physical, mechanical, and degradation properties for 3D tissue engineering. The high control and tunability of spacer fabric properties makes it a promising candidate for the regeneration of different tissues in patient-specific applications.


Assuntos
Poliésteres , Engenharia Tecidual , Animais , Camundongos , Poliésteres/química , Porosidade , Têxteis , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...