Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39026712

RESUMO

Stepping movement is delta (1-4 Hz) rhythmic and depends on sensory inputs. In addition to delta rhythms, beta (10-30 Hz) frequency dynamics are also prominent in the motor circuits and are coupled to neuronal delta rhythms both at the network and the cellular levels. Since beta rhythms are broadly supported by cortical and subcortical sensorimotor circuits, we explore how beta-frequency sensory stimulation influences delta-rhythmic stepping movement, and dorsal striatal circuit regulation of stepping. We delivered audiovisual stimulation at 10 Hz or 145 Hz to mice voluntarily locomoting, while simultaneously recording stepping movement, striatal cellular calcium dynamics and local field potentials (LFPs). We found that 10 Hz, but not 145 Hz stimulation prominently entrained striatal LFPs. Even though sensory stimulation at both frequencies promoted locomotion and desynchronized striatal network, only 10 Hz stimulation enhanced the delta rhythmicity of stepping movement and strengthened the coupling between stepping and striatal LFP delta and beta oscillations. These results demonstrate that higher frequency sensory stimulation can modulate lower frequency dorsal striatal neural dynamics and improve stepping rhythmicity, highlighting the translational potential of non-invasive beta-frequency sensory stimulation for improving gait.

3.
Adv Sci (Weinh) ; 11(11): e2306826, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38161217

RESUMO

Motivated by the unexplored potential of in vitro neural systems for computing and by the corresponding need of versatile, scalable interfaces for multimodal interaction, an accurate, modular, fully customizable, and portable recording/stimulation solution that can be easily fabricated, robustly operated, and broadly disseminated is presented. This approach entails a reconfigurable platform that works across multiple industry standards and that enables a complete signal chain, from neural substrates sampled through micro-electrode arrays (MEAs) to data acquisition, downstream analysis, and cloud storage. Built-in modularity supports the seamless integration of electrical/optical stimulation and fluidic interfaces. Custom MEA fabrication leverages maskless photolithography, favoring the rapid prototyping of a variety of configurations, spatial topologies, and constitutive materials. Through a dedicated analysis and management software suite, the utility and robustness of this system are demonstrated across neural cultures and applications, including embryonic stem cell-derived and primary neurons, organotypic brain slices, 3D engineered tissue mimics, concurrent calcium imaging, and long-term recording. Overall, this technology, termed "mind in vitro" to underscore the computing inspiration, provides an end-to-end solution that can be widely deployed due to its affordable (>10× cost reduction) and open-source nature, catering to the expanding needs of both conventional and unconventional electrophysiology.


Assuntos
Encéfalo , Neurônios , Eletrodos , Encéfalo/fisiologia , Neurônios/fisiologia , Estimulação Elétrica , Fenômenos Eletrofisiológicos/fisiologia
4.
Commun Biol ; 6(1): 751, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468561

RESUMO

Cortical representations supporting many cognitive abilities emerge from underlying circuits comprised of several different cell types. However, cell type-specific contributions to rate and timing-based cortical coding are not well-understood. Here, we investigated the role of parvalbumin neurons in cortical complex scene analysis. Many complex scenes contain sensory stimuli which are highly dynamic in time and compete with stimuli at other spatial locations. Parvalbumin neurons play a fundamental role in balancing excitation and inhibition in cortex and sculpting cortical temporal dynamics; yet their specific role in encoding complex scenes via timing-based coding, and the robustness of temporal representations to spatial competition, has not been investigated. Here, we address these questions in auditory cortex of mice using a cocktail party-like paradigm, integrating electrophysiology, optogenetic manipulations, and a family of spike-distance metrics, to dissect parvalbumin neurons' contributions towards rate and timing-based coding. We find that suppressing parvalbumin neurons degrades cortical discrimination of dynamic sounds in a cocktail party-like setting via changes in rapid temporal modulations in rate and spike timing, and over a wide range of time-scales. Our findings suggest that parvalbumin neurons play a critical role in enhancing cortical temporal coding and reducing cortical noise, thereby improving representations of dynamic stimuli in complex scenes.


Assuntos
Córtex Auditivo , Percepção Auditiva , Neurônios , Parvalbuminas , Animais , Camundongos , Neurônios/fisiologia , Córtex Auditivo/fisiologia , Optogenética
5.
Nat Commun ; 14(1): 3802, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365189

RESUMO

Rhythmic neural network activity has been broadly linked to behavior. However, it is unclear how membrane potentials of individual neurons track behavioral rhythms, even though many neurons exhibit pace-making properties in isolated brain circuits. To examine whether single-cell voltage rhythmicity is coupled to behavioral rhythms, we focused on delta-frequencies (1-4 Hz) that are known to occur at both the neural network and behavioral levels. We performed membrane voltage imaging of individual striatal neurons simultaneously with network-level local field potential recordings in mice during voluntary movement. We report sustained delta oscillations in the membrane potentials of many striatal neurons, particularly cholinergic interneurons, which organize spikes and network oscillations at beta-frequencies (20-40 Hz) associated with locomotion. Furthermore, the delta-frequency patterned cellular dynamics are coupled to animals' stepping cycles. Thus, delta-rhythmic cellular dynamics in cholinergic interneurons, known for their autonomous pace-making capabilities, play an important role in regulating network rhythmicity and movement patterning.


Assuntos
Corpo Estriado , Interneurônios , Animais , Camundongos , Interneurônios/fisiologia , Corpo Estriado/fisiologia , Neurônios/fisiologia , Potenciais da Membrana , Colinérgicos
6.
Front Neurosci ; 16: 799787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221899

RESUMO

Listening in noisy or complex sound environments is difficult for individuals with normal hearing and can be a debilitating impairment for those with hearing loss. Extracting meaningful information from a complex acoustic environment requires the ability to accurately encode specific sound features under highly variable listening conditions and segregate distinct sound streams from multiple overlapping sources. The auditory system employs a variety of mechanisms to achieve this auditory scene analysis. First, neurons across levels of the auditory system exhibit compensatory adaptations to their gain and dynamic range in response to prevailing sound stimulus statistics in the environment. These adaptations allow for robust representations of sound features that are to a large degree invariant to the level of background noise. Second, listeners can selectively attend to a desired sound target in an environment with multiple sound sources. This selective auditory attention is another form of sensory gain control, enhancing the representation of an attended sound source while suppressing responses to unattended sounds. This review will examine both "bottom-up" gain alterations in response to changes in environmental sound statistics as well as "top-down" mechanisms that allow for selective extraction of specific sound features in a complex auditory scene. Finally, we will discuss how hearing loss interacts with these gain control mechanisms, and the adaptive and/or maladaptive perceptual consequences of this plasticity.

7.
iScience ; 24(11): 103263, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34761183

RESUMO

Recent improvements in genetically encoded voltage indicators enabled optical imaging of action potentials and subthreshold transmembrane voltage in vivo. To perform high-speed voltage imaging of many neurons simultaneously over a large anatomical area, widefield microscopy remains an essential tool. However, the lack of optical sectioning makes widefield microscopy prone to background cross-contamination. We implemented a digital-micromirror-device-based targeted illumination strategy to restrict illumination to the cells of interest and quantified the resulting improvement both theoretically and experimentally with SomArchon expressing neurons. We found that targeted illumination increased SomArchon signal contrast, decreased photobleaching, and reduced background cross-contamination. With the use of a high-speed, large-area sCMOS camera, we routinely imaged tens of spiking neurons simultaneously over minutes in behaving mice. Thus, the targeted illumination strategy described here offers a simple solution for widefield voltage imaging of many neurons over a large field of view in behaving animals.

9.
iScience ; 24(9): 102955, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34458703

RESUMO

Ultrasound modulates brain activity. However, it remains unclear how ultrasound affects individual neurons in the brain, where neural circuit architecture is intact and different brain regions exhibit distinct tissue properties. Using a high-resolution calcium imaging technique, we characterized the effect of ultrasound stimulation on thousands of individual neurons in the hippocampus and the motor cortex of awake mice. We found that brief 100-ms-long ultrasound pulses increase intracellular calcium in a large fraction of individual neurons in both brain regions. Ultrasound-evoked calcium response in hippocampal neurons exhibits a rapid onset with a latency shorter than 50 ms. The evoked response in the hippocampus is shorter in duration and smaller in magnitude than that in the motor cortex. These results demonstrate that noninvasive ultrasound stimulation transiently increases intracellular calcium in individual neurons in awake mice, and the evoked response profiles are brain region specific.

10.
Biomed Opt Express ; 12(3): 1339-1350, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33796357

RESUMO

The inherent constraints on resolution, speed and field of view have hindered the development of high-speed, three-dimensional microscopy techniques over large scales. Here, we present a multiplane line-scan imaging strategy, which uses a series of axially distributed reflecting slits to probe different depths within a sample volume. Our technique enables the simultaneous imaging of an optically sectioned image stack with a single camera at frame rates of hundreds of hertz, without the need for axial scanning. We demonstrate the applicability of our system to monitor fast dynamics in biological samples by performing calcium imaging of neuronal activity in mouse brains and voltage imaging of cardiomyocytes in cardiac samples.

11.
Elife ; 102021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843589

RESUMO

Trace conditioning and extinction learning depend on the hippocampus, but it remains unclear how neural activity in the hippocampus is modulated during these two different behavioral processes. To explore this question, we performed calcium imaging from a large number of individual CA1 neurons during both trace eye-blink conditioning and subsequent extinction learning in mice. Our findings reveal that distinct populations of CA1 cells contribute to trace conditioned learning versus extinction learning, as learning emerges. Furthermore, we examined network connectivity by calculating co-activity between CA1 neuron pairs and found that CA1 network connectivity patterns also differ between conditioning and extinction, even though the overall connectivity density remains constant. Together, our results demonstrate that distinct populations of hippocampal CA1 neurons, forming different sub-networks with unique connectivity patterns, encode different aspects of learning.


Assuntos
Condicionamento Clássico/fisiologia , Condicionamento Palpebral/fisiologia , Extinção Psicológica , Neurônios/fisiologia , Animais , Piscadela/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL
12.
iScience ; 23(7): 101330, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32674057

RESUMO

Fibronectin intrabodies generated with mRNA display (FingRs) are a recently developed tool for labeling excitatory or inhibitory synapses, with the benefit of not altering endogenous synaptic protein expression levels or synaptic transmission. Here, we generated a viral vector FingR toolbox that allows for multi-color, neuron-type-specific labeling of excitatory or inhibitory synapses in multiple brain regions. We screened various fluorophores, FingR fusion configurations, and transcriptional control regulations in adeno-associated virus (AAV) and retrovirus vector designs. We report the development of a red FingR variant and demonstrated dual labeling of excitatory and inhibitory synapses in the same cells. Furthermore, we developed cre-inducible FingR AAV variants and demonstrated their utility, finding that the density of inhibitory synapses in aspiny striatal cholinergic interneurons remained unchanged in response to dopamine depletion. Finally, we generated FingR retroviral vectors, which enabled us to track the development of excitatory and inhibitory synapses in hippocampal adult-born granule cells.

13.
Neuron ; 107(3): 470-486.e11, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32592656

RESUMO

Methods for one-photon fluorescent imaging of calcium dynamics can capture the activity of hundreds of neurons across large fields of view at a low equipment complexity and cost. In contrast to two-photon methods, however, one-photon methods suffer from higher levels of crosstalk from neuropil, resulting in a decreased signal-to-noise ratio and artifactual correlations of neural activity. We address this problem by engineering cell-body-targeted variants of the fluorescent calcium indicators GCaMP6f and GCaMP7f. We screened fusions of GCaMP to natural, as well as artificial, peptides and identified fusions that localized GCaMP to within 50 µm of the cell body of neurons in mice and larval zebrafish. One-photon imaging of soma-targeted GCaMP in dense neural circuits reported fewer artifactual spikes from neuropil, an increased signal-to-noise ratio, and decreased artifactual correlation across neurons. Thus, soma-targeting of fluorescent calcium indicators facilitates usage of simple, powerful, one-photon methods for imaging neural calcium dynamics.


Assuntos
Encéfalo/diagnóstico por imagem , Cálcio/metabolismo , Corpo Celular/patologia , Neurônios/patologia , Imagem Óptica/métodos , Animais , Artefatos , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio , Corpo Celular/metabolismo , Proteínas de Fluorescência Verde , Camundongos , Neurônios/metabolismo , Neurópilo , Peixe-Zebra
14.
Nature ; 574(7778): 413-417, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31597963

RESUMO

A longstanding goal in neuroscience has been to image membrane voltage across a population of individual neurons in an awake, behaving mammal. Here we describe a genetically encoded fluorescent voltage indicator, SomArchon, which exhibits millisecond response times and is compatible with optogenetic control, and which increases the sensitivity, signal-to-noise ratio, and number of neurons observable several-fold over previously published fully genetically encoded reagents1-8. Under conventional one-photon microscopy, SomArchon enables the routine population analysis of around 13 neurons at once, in multiple brain regions (cortex, hippocampus, and striatum) of head-fixed, awake, behaving mice. Using SomArchon, we detected both positive and negative responses of striatal neurons during movement, as previously reported by electrophysiology but not easily detected using modern calcium imaging techniques9-11, highlighting the power of voltage imaging to reveal bidirectional modulation. We also examined how spikes relate to the subthreshold theta oscillations of individual hippocampal neurons, with SomArchon showing that the spikes of individual neurons are more phase-locked to their own subthreshold theta oscillations than to local field potential theta oscillations. Thus, SomArchon reports both spikes and subthreshold voltage dynamics in awake, behaving mice.


Assuntos
Biomarcadores Ambientais , Hipocampo/citologia , Neurônios/fisiologia , Imagem Óptica/métodos , Vigília/fisiologia , Potenciais de Ação/fisiologia , Animais , Biomarcadores Ambientais/genética , Hipocampo/diagnóstico por imagem , Camundongos , Optogenética
15.
Nat Neurosci ; 22(4): 586-597, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30804530

RESUMO

Striatal parvalbumin (PV) and cholinergic interneurons (CHIs) are poised to play major roles in behavior by coordinating the networks of medium spiny cells that relay motor output. However, the small numbers and scattered distribution of these cells have hindered direct assessment of their contribution to activity in networks of medium spiny neurons (MSNs) during behavior. Here, we build on recent improvements in single-cell calcium imaging combined with optogenetics to test the capacity of PVs and CHIs to affect MSN activity and behavior in mice engaged in voluntary locomotion. We find that PVs and CHIs have unique effects on MSN activity and dissociable roles in supporting movement. PV cells facilitate movement by refining the activation of MSN networks responsible for movement execution. CHIs, in contrast, synchronize activity within MSN networks to signal the end of a movement bout. These results provide new insights into the striatal network activity that supports movement.


Assuntos
Neurônios Colinérgicos/fisiologia , Corpo Estriado/fisiologia , Interneurônios/fisiologia , Locomoção , Parvalbuminas/metabolismo , Animais , Sinalização do Cálcio , Feminino , Interneurônios/metabolismo , Masculino , Camundongos Transgênicos , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Imagem Óptica
16.
Optica ; 6(4): 389-395, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34504902

RESUMO

Fast, volumetric imaging over large scales has been a long-standing challenge in biological microscopy. To address this challenge, we report an augmented variant of confocal microscopy that uses a series of reflecting pinholes axially distributed in the detection space, such that each pinhole probes a different depth within the sample. We thus obtain simultaneous multiplane imaging without the need for axial scanning. Our microscope technique is versatile and configured here to provide two-color fluorescence imaging with a field of view larger than a millimeter at video rate. Its general applicability is demonstrated with neuronal imaging of both Caenorhabditis elegans and mouse brains in vivo.

17.
Neuropharmacology ; 144: 155-171, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30352212

RESUMO

Much of our understanding about how acetylcholine modulates prefrontal cortical (PFC) networks comes from behavioral experiments that examine cortical dynamics during highly attentive states. However, much less is known about how PFC is recruited during passive sensory processing and how acetylcholine may regulate connectivity between cortical areas outside of task performance. To investigate the involvement of PFC and cholinergic neuromodulation in passive auditory processing, we performed simultaneous recordings in the auditory cortex (AC) and PFC in awake head fixed mice presented with a white noise auditory stimulus in the presence or absence of local cholinergic antagonists in AC. We found that a subset of PFC neurons were strongly driven by auditory stimuli even when the stimulus had no associative meaning, suggesting PFC monitors stimuli under passive conditions. We also found that cholinergic signaling in AC shapes the strength of auditory driven responses in PFC, by modulating the intra-cortical sensory response through muscarinic interactions in AC. Taken together, these findings provide novel evidence that cholinergic mechanisms have a continuous role in cortical gating through muscarinic receptors during passive processing and expand traditional views of prefrontal cortical function and the contributions of cholinergic modulation in cortical communication.


Assuntos
Córtex Auditivo/metabolismo , Percepção Auditiva/fisiologia , Córtex Pré-Frontal/metabolismo , Receptores Muscarínicos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Associação , Córtex Auditivo/efeitos dos fármacos , Vias Auditivas/efeitos dos fármacos , Vias Auditivas/metabolismo , Percepção Auditiva/efeitos dos fármacos , Sincronização Cortical/efeitos dos fármacos , Sincronização Cortical/fisiologia , Camundongos Transgênicos , Microeletrodos , Antagonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Optogenética , Córtex Pré-Frontal/efeitos dos fármacos , Escopolamina/farmacologia , Filtro Sensorial/efeitos dos fármacos , Filtro Sensorial/fisiologia , Vigília
18.
eNeuro ; 5(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30221189

RESUMO

Advances in calcium imaging have made it possible to record from an increasingly larger number of neurons simultaneously. Neuroscientists can now routinely image hundreds to thousands of individual neurons. An emerging technical challenge that parallels the advancement in imaging a large number of individual neurons is the processing of correspondingly large datasets. One important step is the identification of individual neurons. Traditional methods rely mainly on manual or semimanual inspection, which cannot be scaled for processing large datasets. To address this challenge, we focused on developing an automated segmentation method, which we refer to as automated cell segmentation by adaptive thresholding (ACSAT). ACSAT works with a time-collapsed image and includes an iterative procedure that automatically calculates global and local threshold values during successive iterations based on the distribution of image pixel intensities. Thus, the algorithm is capable of handling variations in morphological details and in fluorescence intensities in different calcium imaging datasets. In this paper, we demonstrate the utility of ACSAT by testing it on 500 simulated datasets, two wide-field hippocampus datasets, a wide-field striatum dataset, a wide-field cell culture dataset, and a two-photon hippocampus dataset. For the simulated datasets with truth, ACSAT achieved >80% recall and precision when the signal-to-noise ratio was no less than ∼24 dB.


Assuntos
Cálcio/metabolismo , Hipocampo/metabolismo , Processamento de Imagem Assistida por Computador , Neuroimagem , Neurônios/metabolismo , Algoritmos , Animais , Células Cultivadas , Feminino , Processamento de Imagem Assistida por Computador/métodos , Camundongos Endogâmicos C57BL
19.
Cell Rep ; 24(2): 294-303, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996091

RESUMO

More specific and broadly applicable viral gene-targeting tools for labeling neuron subtypes are needed to advance neuroscience research, especially in rodent transgenic disease models and genetically intractable species. Here, we develop a viral vector that restricts transgene expression to GABAergic interneurons in the rodent neocortex by exploiting endogenous microRNA regulation. Our interneuron-targeting, microRNA-guided neuron tag, "GABA mAGNET," achieves >95% interneuron selective labeling in the mouse cortex, including in a murine model of autism and also some preferential labeling of interneurons in the rat brain. We demonstrate an application of our GABA mAGNET by performing simultaneous, in vivo optogenetic control of two distinct neuron subtypes. This interneuron labeling tool highlights the potential of microRNA-based viral gene targeting to specific neuron subtypes.


Assuntos
Córtex Cerebral/metabolismo , Marcação de Genes , Interneurônios/metabolismo , Lentivirus/metabolismo , MicroRNAs/metabolismo , Coloração e Rotulagem , Animais , Transtorno Autístico/patologia , Dependovirus/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Neurônios/metabolismo , Neurônios/patologia , Optogenética , Ratos , Sinapsinas/genética , Ácido gama-Aminobutírico/metabolismo
20.
Cell Rep ; 20(6): 1335-1347, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28793258

RESUMO

AMPA receptors (AMPARs) mediate fast excitatory synaptic transmission and are crucial for synaptic plasticity, learning, and memory. However, the molecular control of AMPAR stability and its neurophysiological significance remain unclear. Here, we report that AMPARs are subject to lysine acetylation at their C termini. Acetylation reduces AMPAR internalization and degradation, leading to increased cell-surface localization and prolonged receptor half-life. Through competition for the same lysine residues, acetylation intensity is inversely related to the levels of AMPAR ubiquitination. We find that sirtuin 2 (SIRT2) acts as an AMPAR deacetylase regulating AMPAR trafficking and proteostasis. SIRT2 knockout mice (Sirt2-/-) show marked upregulation in AMPAR acetylation and protein accumulation. Both Sirt2-/- mice and mice expressing acetylation mimetic GluA1 show aberrant synaptic plasticity, accompanied by impaired learning and memory. These findings establish SIRT2-regulated lysine acetylation as a form of AMPAR post-translational modification that regulates its turnover, as well as synaptic plasticity and cognitive function.


Assuntos
Memória , Plasticidade Neuronal , Processamento de Proteína Pós-Traducional , Receptores de AMPA/metabolismo , Sirtuína 2/metabolismo , Acetilação , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Transporte Proteico , Proteólise , Ratos , Ratos Sprague-Dawley , Sirtuína 2/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA