Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polym Chem ; 13(15): 2115-2122, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36188127

RESUMO

Although on-demand cargo release has been demonstrated in a wide range of microparticle platforms, many existing methods lack specific loading interactions and/or undergo permanent damage to the microparticle to release the cargo. Here, we report a novel method for electrostatically loading negatively charged molecular cargo in oligoviologen-crosslinked microparticles, wherein the cargo can be released upon activation by visible light. A water-in-oil (W/O) emulsion polymerization method was used to fabricate narrowly dispersed microparticles crosslinked by a dicationic viologen-based dimer and a poly(ethylene glycol) diacrylate. A zinc-tetraphenyl porphyrin photocatalyst was also polymerized into the microparticle and used to photochemically reduce the viologen subunits to their monoradical cations through a visible-light-mediated photoredox mechanism with triethanolamine (TEOA) as a sacrificial reductant. The microparticles were characterized by microscopy methods revealing uniform, spherical microparticles 481 ± 20.9 nm in diameter. Negatively charged molecular cargo (methyl orange, MO) was electrostatically loaded into the microparticles through counteranion metathesis. Upon irradiation with blue (450 nm) light, the photo-reduced viologen crosslinker subunits lose positive charges, resulting in release of the anionic MO cargo. Controlled release of the dye, as tracked by absorption spectroscopy, was observed over time, yielding release of up to 40% of the cargo in 48 h and 60% in 120 h in single dynamic dialysis experiment. However, full release of cargo was achieved upon transferring the microparticles to a fresh TEOA solution after the initial 120 h period.

2.
Chem Commun (Camb) ; 58(9): 1358-1361, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34989373

RESUMO

An iterative step-growth addition method was used to expedite the gram-scale synthesis of main-chain polyviologens by several days, while also producing the longest main-chain polyviologen (i.e., 26 viologen subunits) reported to date. Facile degradation using inorganic and organic aqueous bases was also demonstrated for a representative oligoviologen (6V-Me·12Cl), a polyviologen (26V-Me·52Cl), and oligoviologen-crosslinked hydrogels.

3.
Chem Sci ; 11(40): 10910-10920, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34094340

RESUMO

Hydrogels that can respond to multiple external stimuli represent the next generation of advanced functional biomaterials. Here, a series of multimodal hydrogels were synthesized that can contract and expand reversibly over several cycles while changing their mechanical properties in response to blue and red light, as well as heat (∼50 °C). The light-responsive behavior was achieved through a photoredox-based mechanism consisting of photoinduced electron transfer from a zinc porphyrin photocatalyst in its excited state to oligoviologen-based macrocrosslinkers, both of which were integrated into the hydrogel polymer network during gel formation. Orthogonal thermoresponsive properties were also realized by introducing N-isopropyl acrylamide (NIPAM) monomer simultaneously with hydroxyethyl acrylate (HEA) in the pre-gel mixture to produce a statistical 60 : 40 HEA : NIPAM polymer network. The resultant hydrogel actuators - crosslinked with either a styrenated viologen dimer (2V4+-St) or hexamer (6V12+-St) - were exposed to red or blue light, or heat, for up to 5 h, and their rate of contraction, as well as the corresponding changes in their physical properties (i.e., stiffness, tensile strength, Young's modulus, etc.), were measured. The combined application of blue light and heat to the 6V12+-St-based hydrogels was also demonstrated, resulting in hydrogels with more than two-fold faster contraction kinetics and dramatically enhanced mechanical robustness when fully contracted. We envision that the reported materials and the corresponding methods of remotely manipulating the dynamic hydrogels may serve as a useful blueprint for future adaptive materials used in biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...