Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 41(8): 1885-1902, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35512673

RESUMO

We evaluated the precision and accuracy of multilaboratory measurements for determining freely dissolved concentrations (Cfree ) of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in sediment porewater using polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) polymeric samplers. Four laboratories exposed performance reference compound (PRC) preloaded polymers to actively mixed and static ex situ sediment for approximately 1 month; two laboratories had longer exposures (2 and 3 months). For Cfree results, intralaboratory precision was high for single compounds (coefficient of variation 50% or less), and for most PAHs and PCBs interlaboratory variability was low (magnitude of difference was a factor of 2 or less) across polymers and exposure methods. Variability was higher for the most hydrophobic PAHs and PCBs, which were present at low concentrations and required larger PRC-based corrections, and also for naphthalene, likely due to differential volatilization losses between laboratories. Overall, intra- and interlaboratory variability between methods (PDMS vs. LDPE, actively mixed vs. static exposures) was low. The results that showed Cfree polymer equilibrium was achieved in approximately 1 month during active exposures, suggesting that the use of PRCs may be avoided for ex situ analysis using comparable active exposure; however, such ex situ testing may not reflect field conditions. Polymer-derived Cfree concentrations for most PCBs and PAHs were on average within a factor of 2 compared with concentrations in isolated porewater, which were directly measured by one laboratory; difference factors of up to 6 were observed for naphthalene and the most hydrophobic PAHs and PCBs. The Cfree results were similar for academic and private sector laboratories. The accuracy and precision that we demonstrate for determination of Cfree using polymer sampling are anticipated to increase regulatory acceptance and confidence in use of the method. Environ Toxicol Chem 2022;41:1885-1902. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Dimetilpolisiloxanos , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Humanos , Naftalenos , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Polietileno/química , Polímeros , Poluentes Químicos da Água/análise
2.
Nat Protoc ; 15(5): 1800-1828, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32313252

RESUMO

The freely dissolved concentration (Cfree) of hydrophobic organic chemicals in sediments and soils is considered the driver behind chemical bioavailability and, ultimately, toxic effects in benthic organisms. Therefore, quantifying Cfree, although challenging, is critical when assessing risks of contamination in field and spiked sediments and soils (e.g., when judging remediation necessity or interpreting results of toxicity assays performed for chemical safety assessments). Here, we provide a state-of-the-art passive sampling protocol for determining Cfree in sediment and soil samples. It represents an international consensus procedure, developed during a recent interlaboratory comparison study. The protocol describes the selection and preconditioning of the passive sampling polymer, critical incubation system component dimensions, equilibration and equilibrium condition confirmation, quantitative sampler extraction, quality assurance/control issues and final calculations of Cfree. The full procedure requires several weeks (depending on the sampler used) because of prolonged equilibration times. However, hands-on time, excluding chemical analysis, is approximately 3 d for a set of about 15 replicated samples.


Assuntos
Sedimentos Geológicos/análise , Poluentes do Solo/análise , Solo/química , Microextração em Fase Sólida/métodos , Poluição Ambiental , Interações Hidrofóbicas e Hidrofílicas
3.
Environ Sci Technol ; 52(8): 4565-4573, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29578337

RESUMO

Polychlorinated biphenyl (PCB) fluxes from contaminated sediments can be caused by mechanisms including diffusion, bioirrigation, and resuspension, but it is often unclear which mechanisms are important. In the Lower Duwamish Waterway (Seattle, Washington), the presence of abundant benthic macrofauna suggests that porewater bioirrigation may be an important mechanism for PCB transport from the bed into the overlying water column. In this field study, the fluxes of PCBs due to bioirrigation were quantified by using (a) polyethylene (PE) samplers to quantify in situ and ex situ (i.e., equilibrium) PCB porewater concentration profiles and (b) measurements of the geochemical tracer 222Rn to quantify the rate of porewater exchange with overlying water. The results showed that bioirrigation caused sorptive disequilibrium with the surrounding sediment, which led to lower in situ porewater concentrations than expected from sediment concentrations. The combined fluxes of seven PCB congeners (Σ7PCBs) were 1.6-26 ng/m2/day for the three field sites, similar in magnitude to the upper limit estimates of diffusive fluxes calculated assuming water-side boundary layer control (Σ7PCBs = 1.3-47 ng/m2/day). Moreover, the depleted in situ porewater concentrations imply lower diffusive flux estimates than if the ex situ porewater concentrations had been used to estimate fluxes (Σ7PCBs = 89-670 ng/m2/day). These results suggest that nondiffusive PCB fluxes from the sediment bed are occurring and that quantifying in situ porewater concentrations is crucial for accurately quantifying both diffusive and nondiffusive PCB fluxes.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Washington
4.
Environ Sci Technol ; 52(6): 3574-3582, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29488382

RESUMO

This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical guidance for standardized passive sampling, and advance the use of passive sampling in regulatory decision making by increasing confidence in the use of the technique. The study was performed by a consortium of 11 laboratories and included experiments with 14 passive sampling formats on 3 sediments for 25 target chemicals (PAHs and PCBs). The resulting overall interlaboratory variability was large (a factor of ∼10), but standardization of methods halved this variability. The remaining variability was primarily due to factors not related to passive sampling itself, i.e., sediment heterogeneity and analytical chemistry. Excluding the latter source of variability, by performing all analyses in one laboratory, showed that passive sampling results can have a high precision and a very low intermethod variability (

Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Monitoramento Ambiental , Compostos Orgânicos , Medição de Risco
5.
Chemosphere ; 200: 227-236, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29494903

RESUMO

Laboratory and field studies were used to evaluate the performance of low-density polyethylene (PE) passive samplers for assessing the freely dissolved concentrations of DDT and its degradates (DDD and DDE, together referred to as DDx) in an Italian lake environment. We tested commercially available 25 µm thick PE sheets as well as specially synthesized, 10 µm thick PE films which equilibrated with their surroundings more quickly. We measured PE-water partitioning coefficients (Kpew) of the 10 µm thick PE films, finding good correspondence with previously reported values for thicker PE. Use of the 10 µm PE for ex situ sampling of a lake sediment containing DDx in laboratory tumbling experiments showed repeatability of ±15% (= standard deviation/mean). Next, we deployed replicate 10 µm and 25 µm PE samplers (N = 4 for 10 d and for 30 d) in the water and sediment of a lake located in northern Italy; the results showed dissolved DDx concentrations in the picogram/L range in porewater and the bottom water. Values deduced from 10 µm thick PE films compared well (95% of all comparison pairs matched within a factor of 5) with those obtained using PE films of 25 µm thickness when dissolved DDx concentrations were estimated using performance reference compound (PRC) corrections, whether left at the bed-water interface for 10 or 30 days. These results demonstrated the potential of this sampling method to provide estimation of the truly dissolved DDx concentrations, and thereby the mobile and bio-available fractions in both surface waters and sediment beds.


Assuntos
DDT/análise , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental , Sedimentos Geológicos/análise , Membranas Artificiais , Polietileno/química , Poluentes Químicos da Água/análise , DDT/química , Sedimentos Geológicos/química , Itália , Lagos , Poluentes Químicos da Água/química
6.
Environ Sci Process Impacts ; 20(1): 220-231, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29264604

RESUMO

Passive sampling is becoming a widely used tool for assessing freely dissolved concentrations of hydrophobic organic contaminants in environmental media. For certain media and target analytes, the time to reach equilibrium exceeds the deployment time, and in such cases, the loss of performance reference compounds (PRCs), loaded in the sampler before deployment, is one of the common ways used to assess the fractional equilibration of target analytes. The key assumption behind the use of PRCs is that their release is solely diffusion driven. But in this work, we show that PRC transformations in the sediment can have a measurable impact on the PRC releases and even allow estimation of that compound's transformation rate in the environment of interest. We found that in both field and lab incubations, the loss of the 13C 2,4'-DDT PRC from a polyethylene (PE) passive sampler deployed at the sediment-water interface was accelerated compared to the loss of other PRCs (13C-labeled PCBs, 13C-labeled DDE and DDD). The DDT PRC loss was also accompanied by accumulation in the PE of its degradation product, 13C 2,4'-DDD. Using a 1D reaction-diffusion model, we deduced the in situ degradation rates of DDT from the measured PRC loss. The in situ degradation rates increased with depth into the sediment bed (0.14 d-1 at 0-10 cm and 1.4 d-1 at 30-40 cm) and although they could not be independently validated, these rates compared favorably with literature values. This work shows that passive sampling users should be cautious when choosing PRCs, as degradation processes can affect some PRC's releases from the passive sampler. More importantly, this work opens up the opportunity for novel applications of passive samplers, particularly with regard to investigating in situ degradation rates, pathways, and products for both legacy and emerging contaminants. However, further work is needed to confirm that the rates deduced from model fitting of PRC loss are a true reflection of DDT transformation rates in sediments.


Assuntos
DDT/análise , Diclorodifenil Dicloroetileno/análise , Diclorodifenildicloroetano/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , China , Difusão , Monitoramento Ambiental/instrumentação , Recuperação e Remediação Ambiental , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Modelos Teóricos , Polietileno/química
7.
Environ Pollut ; 227: 263-270, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28475979

RESUMO

Waterbodies polluted with polychlorinated biphenyls (PCBs) may cause the air in the surrounding area to become PCB-contaminated. Conversely, when a waterbody is located in or near an urban area, the deposition of atmospheric PCBs may act as a low-level, ongoing source of PCB contamination to that water. Distinguishing these situations is necessary to be protective of human populations and to guide efforts seeking to cleanup such aquatic ecosystems. To assess the situation at the Lower Duwamish Waterway (LDW) Superfund site, low-density polyethylene passive samplers were deployed in the summer of 2015 to quantify freely dissolved water and gaseous air concentrations of PCBs thereby enabling estimates of the direction and magnitude of air-water exchange of PCB congeners. For the sum of the 27 PCB congeners, average concentrations were 220 pg/m3 (95% C.I.: 80-610) in the air and 320 pg/L (95% C.I.: 110-960) in the water. The sum of air-water exchange fluxes of these PCB congeners was estimated to be 68 ng/m2/day (95% C.I.: 30-148) into the lower atmosphere, contrasting with the reported wet and dry depositional flux of only 5.5 ng/m2/day (95% C.I.: 1-38) from the air into the water. Therefore, the atmosphere was ultimately a sink of PCBs from the LDW Superfund site, at least under 2015 summertime conditions. However, we conclude that air-water exchange of PCBs is likely only a minor sink of PCBs from the LDW and only a minor source of contamination to the region's local atmosphere.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Ar/análise , Atmosfera/química , Polietileno , Estações do Ano
8.
Environ Pollut ; 218: 95-101, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27552042

RESUMO

Superfund sites with sediments contaminated by hydrophobic organic compounds (HOCs) can be difficult to characterize because of the complex nature of sorption to sediments. Porewater concentrations, which are often used to model transport of HOCs from the sediment bed into overlying water, benthic organisms, and the larger food web, are traditionally estimated using sediment concentrations and sorption coefficients estimated using equilibrium partitioning (EqP) theory. However, researchers have begun using polymeric samplers to determine porewater concentrations since this method does not require knowledge of the sediment's sorption properties. In this work, polyethylene passive samplers were deployed into sediments in the field (in situ passive sampling) and mixed with sediments in the laboratory (ex situ active sampling) that were contaminated with polychlorinated biphenyls (PCBs). The results show that porewater concentrations based on in situ and ex situ sampling generally agreed within a factor of two, but in situ concentrations were consistently lower than ex situ porewater concentrations. Imprecision arising from in situ passive sampling procedures does not explain this bias suggesting that field processes like bioirrigation may cause the differences observed between in situ and ex situ polymeric samplers.


Assuntos
Biodegradação Ambiental , Exposição Ambiental , Monitoramento Ambiental , Sedimentos Geológicos/química , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Cadeia Alimentar , Humanos , Massachusetts , Porosidade , Padrões de Referência , Eliminação de Resíduos , Reprodutibilidade dos Testes
9.
Environ Sci Process Impacts ; 18(8): 981-91, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27465804

RESUMO

Estrogens are known to be potent endocrine disrupting chemicals that are commonly found in wastewater effluents at ng L(-1) levels. Yet, we know very little about the distribution and fate of estrogens in coastal oceans that receive wastewater inputs. This study measured a wide range of steroidal estrogens in sewage-impacted seawater using ultra high performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) together with the method of standard addition. In Massachusetts Bay, we find conjugated, free, and halogenated estrogens at concentrations that are consistent with dilution at sites close to the sewage source. At a site 6 miles down current of the sewage source, we observe estrone (E1) concentrations (520 ± 180 pg L(-1)) that are nearly double the nearfield concentrations (320 ± 60 pg L(-1)) despite 9-fold dilution of carbamazepine, which was used as a conservative sewage tracer. Our results suggest that background E1 concentrations in Massachusetts Bay (∼270 ± 50 pg L(-1)) are derived largely from sources unrelated to wastewater effluent such as marine vertebrates.


Assuntos
Disruptores Endócrinos/análise , Estrogênios/análise , Estrona/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Animais , Congêneres do Estradiol , Halogenação , Massachusetts , Oceanos e Mares , Esgotos/química , Espectrometria de Massas em Tandem , Águas Residuárias/química
10.
Environ Sci Technol ; 50(1): 285-93, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26587648

RESUMO

Black carbons (BCs) dominate the sorption of many hydrophobic organic compounds (HOCs) in soils and sediments, thereby reducing the HOCs' mobilities and bioavailabilities. However, we do not have data for diverse HOCs' sorption to BC because it is time-consuming and labor-intensive to obtain isotherms on soot and other BCs. In this study, we developed a frontal analysis chromatographic method to investigate the adsorption of 21 organic compounds with diverse functional groups to NIST diesel soot. This method was precise and time-efficient, typically taking only a few hours to obtain an isotherm. Based on 102 soot-carbon normalized sorption coefficients (KsootC) acquired at different sorbate concentrations, a sorbate-activity-dependent polyparameter linear free-energy relationship was established: logKsootC = (3.74 ± 0.11)V + ((-0.35 ± 0.02)log ai)E + (-0.62 ± 0.10)A + (-3.35 ± 0.11)B + (-1.45 ± 0.09); (N = 102, R(2) = 0.96, SE = 0.18), where V, E, A, and B are the sorbate's McGowan's characteristic volume, excess molar refraction, and hydrogen acidity and basicity, respectively; and ai is the sorbate's aqueous activity reflecting the system's approach to saturation. The difference in dispersive interactions with the soot versus with the water was the dominant factor encouraging adsorption, and H-bonding interactions discouraged this process. Using this relationship, soot-water and sediment-water or soil-water adsorption coefficients of HOCs of interest (PAHs and PCBs) were estimated and compared with the results reported in the literature.


Assuntos
Compostos Orgânicos/química , Fuligem/química , Adsorção , Carbono/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Solo/química , Água/química
11.
Integr Environ Assess Manag ; 12(3): 486-92, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26426907

RESUMO

Polymeric passive samplers have become a common method for estimating freely dissolved concentrations in environmental media. However, this approach has not yet been adopted by investigators conducting remedial investigations of contaminated environmental sites. Successful adoption of this sampling methodology relies on an understanding of how passive samplers accumulate chemical mass as well as developing guidance for the design and deployment of passive samplers. Herein, we outline the development of a simple mathematical relationship of the environmental, polymer, and chemical properties that control the uptake rate. This relationship, called a timescale, is then used to illustrate how each property controls the rate of equilibration in samplers deployed in the water or in the sediment. Guidance is also given on how to use the timescales to select an appropriate polymer, deployment time, and suite of performance reference compounds. Integr Environ Assess Manag 2016;12:486-492. © 2015 SETAC.


Assuntos
Monitoramento Ambiental/instrumentação , Guias como Assunto , Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Meio Ambiente , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Sedimentos Geológicos/química , Bifenilos Policlorados/análise
12.
Environ Toxicol Chem ; 34(12): 2739-49, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26109238

RESUMO

Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments.


Assuntos
Compostos Orgânicos/análise , Polietilenos/análise , Poluentes Químicos da Água/análise , Água/análise , Algoritmos , DDT/análise , Difusão , Cromatografia Gasosa-Espectrometria de Massas , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Biológicos , Modelos Teóricos , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Solubilidade
13.
Environ Toxicol Chem ; 34(7): 1464-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25708318

RESUMO

Black carbons, including soots, chars, activated carbons, and engineered nanocarbons, have different surface properties, but the extent to which these affect their sorbent properties is not known. To evaluate this for an environmentally ubiquitous form of black carbon, biomass char, the surface of a well-studied wood char was probed using 14 sorbates exhibiting diverse functional groups, and the data were fit with a polyparameter linear free energy relationship to assess the importance of the various possible sorbate-char surface interactions. Sorption from water to water-wet char evolved with the sorbate's degree of surface saturation and depended on only a few sorbate parameters: log K(d)L/kg) = [(4.03 ± 0.14) + (-0.15 ± 0.04) log a(i)] V + [(-0.28 ± 0.04) log a(i)] S + (-5.20 ± 0.21) B, where a(i) is the aqueous saturation of the sorbate i, V is McGowan's characteristic volume, S reflects polarity, and B represents the electron-donation basicity. As is generally observed for activated carbon, the sorbate's size encouraged sorption from water to the char, whereas its electron donation and proton acceptance discouraged sorption from water. The magnitude and saturation dependence differed significantly from what has been seen for activated carbons, presumably reflecting the unique surface chemistries of these 2 black carbon materials and suggesting that black carbon-specific sorption coefficients will yield more accurate assessments of contaminant mobility and bioavailability, as well as evaluation of a site's response to remediation.


Assuntos
Carvão Vegetal/química , Compostos Orgânicos/química , Água/química , Madeira/química , Adsorção , Cinética , Propriedades de Superfície , Termodinâmica
14.
Environ Toxicol Chem ; 34(5): 993-1000, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25598269

RESUMO

Biota-sediment accumulation factors (BSAF), frequently used to predict tissue concentrations of organisms living within and above sediments contaminated with hydrophobic organic chemicals, often produce inaccurate estimates. Hence, freely dissolved porewater concentrations, CW , have also been investigated as predictors of organism tissue concentrations, but they are more difficult to measure than bulk sediment concentrations (used with BSAF). In situ passive sampling methods, however, make it possible to deduce CW with less effort than required to measure the value directly and make it possible to relate CW with tissue concentrations of undisturbed, native organisms. In the present study, polyethylene passive samplers containing performance reference compounds (d10-phenanthrene, d10-pyrene, and d12-chrysene) were deployed in diverse sediment beds near Boston, Massachusetts, USA, for a 1-wk period. Clams (Mya arenaria) and sediments were then collected from the deployed sediment beds. Concentrations of 3 polycyclic aromatic hydrocarbons (PAHs; phenanthrene, pyrene, and chrysene) were measured in the porewaters, in clam tissues, and in the bulk sediment. Biota-sediment accumulation factors and polyethylene-deduced CW were used to predict organism tissue concentrations. Ratios of predicted-to-measured values showed that the BSAF method over-predicted tissue concentrations in M. arenaria by up to 2 orders of magnitude. The polyethylene-deduced CW method resulted in average ratios closer to 1 (0.43 ± 0.26, 3.7 ± 2.5, and 1.1 ± 1.2 for phenanthrene, pyrene, and chrysene, respectively, N = 26, uncertainty = ± 1σ).


Assuntos
Monitoramento Ambiental/métodos , Mya/metabolismo , Bifenilos Policlorados/análise , Polietilenos/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , Animais , Biota , Crisenos/análise , Cromatografia Gasosa-Espectrometria de Massas , Sedimentos Geológicos/análise , Compostos Orgânicos/análise , Pirenos/análise , Controle de Qualidade
15.
Environ Sci Technol ; 48(17): 10301-7, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25093866

RESUMO

Hydrophobic organic compounds (HOCs) like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) tend to accumulate in sediment beds when they are released into aquatic environments. Due to this buildup of HOCs in the sediment, the highest water concentrations are often in the pore water. Passive samplers can be used in the field (i.e., in situ) to measure freely dissolved porewater concentrations if target contaminants diffusing through the sediment and into the sampler exhibit the same diffusive retardation factors as performance reference compounds (PRCs) that are diffusing out of the sampler and into the sediment. To test this assumption, polyethylene (PE) passive samplers were placed in an organic- and black- carbon-rich sediment bed in the laboratory with samplers removed every 30 days for 4 months. The concentrations of target contaminants in the PE at each time point, corrected using measures of the losses of PRCs, were in good agreement with separately measured equilibrium concentrations in a well-mixed system. Concentrations in the PE passive samplers, normalized by their polyethylene-water partition coefficients, were also in good agreement with directly measured porewater concentrations. Finally, PE-deduced porewater concentrations were compared with the traditional equilibrium partitioning models and showed that considering sorption to only organic carbon substantially overestimated porewater concentrations. However, predictions improved greatly if sorption to black carbon was also considered.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Água/química , Bifenilos Policlorados/análise , Porosidade , Padrões de Referência , Reprodutibilidade dos Testes , Fatores de Tempo , Poluentes Químicos da Água/análise
16.
Environ Sci Technol ; 48(5): 2569-78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24476066

RESUMO

Steroidal estrogens are potent endocrine-disrupting chemicals that enter natural waters through the discharge of treated and raw sewage. Because estrogens are detrimental to aquatic organisms at sub-nanogram per liter concentrations, many studies have measured so-called "free" estrogen concentrations in wastewater effluents, rivers, and lakes. Other forms of estrogens are also of potential concern because conjugated estrogens can be easily converted to potent free estrogens by bacteria in wastewater treatment plants and receiving waters and halogenated estrogens are likely produced during wastewater disinfection. However, to the best of our knowledge, no studies have concurrently characterized free, conjugated, and halogenated estrogens. We have developed a method that is capable of simultaneously quantifying free, conjugated, and halogenated estrogens in treated wastewater effluent, in which detection limits were 0.13-1.3 ng L(-1) (free), 0.11-1.0 ng L(-1) (conjugated), and 0.18-18 ng L(-1) (halogenated). An aqueous phase additive, ammonium fluoride, was used to increase the electrospray (negative mode) ionization efficiency of free and halogenated estrogens by factors of 20 and 2.6, respectively. The method was validated using treated effluent from the greater Boston metropolitan area, where conjugated and halogenated estrogens made up 60-70% of the steroidal estrogen load on a molar basis.


Assuntos
Disruptores Endócrinos/análise , Estrogênios Conjugados (USP)/análise , Estrogênios/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Boston , Cromatografia Líquida de Alta Pressão , Halogenação , Rios/química , Esgotos/química , Espectrometria de Massas em Tandem
17.
Integr Environ Assess Manag ; 10(2): 197-209, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24288295

RESUMO

Passive sampling methods (PSMs) allow the quantification of the freely dissolved concentration (Cfree ) of an organic contaminant even in complex matrices such as sediments. Cfree is directly related to a contaminant's chemical activity, which drives spontaneous processes including diffusive uptake into benthic organisms and exchange with the overlying water column. Consequently, Cfree provides a more relevant dose metric than total sediment concentration. Recent developments in PSMs have significantly improved our ability to reliably measure even very low levels of Cfree . Application of PSMs in sediments is preferably conducted in the equilibrium regime, where freely dissolved concentrations in the sediment are well-linked to the measured concentration in the sampler via analyte-specific partition ratios. The equilibrium condition can then be assured by measuring a time series or a single time point using passive samplers with different surface to volume ratios. Sampling in the kinetic regime is also possible and generally involves the application of performance reference compounds for the calibration. Based on previous research on hydrophobic organic contaminants, it is concluded that Cfree allows a direct assessment of 1) contaminant exchange and equilibrium status between sediment and overlying water, 2) benthic bioaccumulation, and 3) potential toxicity to benthic organisms. Thus, the use of PSMs to measure Cfree provides an improved basis for the mechanistic understanding of fate and transport processes in sediments and has the potential to significantly improve risk assessment and management of contaminated sediments.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Compostos Orgânicos/análise , Compostos Orgânicos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Animais , Ecotoxicologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Compostos Orgânicos/metabolismo , Compostos Orgânicos/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
18.
ACS Appl Mater Interfaces ; 5(3): 774-81, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23324125

RESUMO

Widespread use of petrochemicals often leads to accidental releases in aquatic environments, occasionally with disastrous results. We have developed a hydrophobic and oleophilic mesh that separates oil from water continuously in situ via capillary action, providing a means of recovering spilt oil from surface waters. Steel mesh is dip-coated in a xylene solution of low-density polyethylene, creating a hydrophobic surface with tunable roughness and opening size. The hydrophobic mesh allows oil to pass through the openings while preventing the concomitant passage of water. A bench-top prototype demonstrated the efficacy of such an oil recovery device and allowed us to quantify the factors governing the ability of the mesh to separate oil and water. Preliminary data analysis suggested that the oleophilic openings behave somewhat like capillary tubes: the oil flux is inversely proportional to oil viscosity, and directly proportional to the size of the mesh openings. An unpinned meniscus model was found to predict the water intrusion pressure successfully, which increased as the opening size decreased. The trade-off between water intrusion and oil flow rate suggests an optimal pore size for given oil properties and sea conditions.

19.
Rapid Commun Mass Spectrom ; 26(22): 2619-26, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23059878

RESUMO

RATIONALE: Steroids are potent hormones that are found in many environments. Yet, contributions from synthetic and endogenous sources are largely uncharacterized. The goal of this study was to evaluate whether carbon isotopes could be used to distinguish between synthetic and endogenous steroids in wastewater and other environmental matrices. METHODS: Estrogens and progestogens were isolated from oral contraceptive pills using semi-preparative liquid chromatography/diode array detection (LC/DAD). Compound purity was confirmed by gas chromatography/flame ionization detection (GC/FID), gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS) and liquid chromatography/mass spectrometry using negative electrospray ionization (LC/ESI-MS). The (13)C content was determined by gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and (14)C was measured by accelerator mass spectrometry (AMS). RESULTS: Synthetic estrogens and progestogens are (13)C-depleted (δ(13)C(estrogen) = -30.0 ± 0.9 ‰; δ(13)C(progestogen) = -30.3 ± 2.6 ‰) compared with endogenous hormones (δ(13)C ~ -16 to -26 ‰). The (14)C content of the majority of synthetic hormones is consistent with synthesis from C(3) plant-based precursors, amended with 'fossil' carbon in the case of EE(2) and norethindrone acetate. Exceptions are progestogens that contain an ethyl group at carbon position 13 and have entirely 'fossil' (14)C signatures. CONCLUSIONS: Carbon isotope measurements have the potential to distinguish between synthetic and endogenous hormones in the environment. Our results suggest that (13)C could be used to discriminate endogenous from synthetic estrogens in animal waste, wastewater effluent, and natural waters. In contrast, (13)C and (14)C together may prove useful for tracking synthetic progestogens.


Assuntos
Isótopos de Carbono/análise , Congêneres do Estradiol/química , Progestinas/química , Cromatografia Líquida , Anticoncepcionais Orais/química , Cromatografia Gasosa-Espectrometria de Massas , Modelos Moleculares , Poluentes Químicos da Água/química
20.
Environ Sci Technol ; 46(6): 3449-56, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22397714

RESUMO

Recent studies have shown that membrane-water partition coefficients of organic chemicals can be used to predict bioaccumulation and type I narcosis toxicity more accurately than the traditional K(OW)-based approach. In this paper, we demonstrate how comprehensive two-dimensional gas chromatography (GC × GC) can be used to estimate such membrane-water partition coefficients (K(PLW)s), focusing in particular on phosphatidyl choline based lipids. This method performed well for a set of 38 compounds, including polycyclic aromatic hydrocarbons, polychlorinated benzenes and biphenyls, and substituted benzenes including some phenols and anilines. The average difference between the estimated and the measured log K(PLW) values of 0.47 log units is smaller than in the case of a log K(OW) correlation approach but larger than seen using a polyparameter linear free energy relationship based approach. However, the GC × GC based method presents the advantage that it can be applied to mixtures of chemicals that are not completely identified, such as petroleum hydrocarbon mixtures. At the same time, our application of the GC × GC method suffered larger errors when applied to certain hydrogen bonding compounds due to the inability of the GC × GC capillary columns phases that we used to interact with analytes via hydrogen bond donation/electron acceptance.


Assuntos
Poluentes Ambientais/química , Compostos Orgânicos/química , Fosfolipídeos/química , Água/química , 1-Octanol/química , Cromatografia Gasosa/métodos , Poluentes Ambientais/toxicidade , Compostos Orgânicos/toxicidade , Medição de Risco , Solventes/química , Solventes/toxicidade , Estupor/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...