Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 6(6): 1128-1142, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38720117

RESUMO

Isolated complex I (CI) deficiencies are a major cause of primary mitochondrial disease. A substantial proportion of CI deficiencies are believed to arise from defects in CI assembly factors (CIAFs) that are not part of the CI holoenzyme. The biochemistry of these CIAFs is poorly defined, making their role in CI assembly unclear, and confounding interpretation of potential disease-causing genetic variants. To address these challenges, we devised a deep mutational scanning approach to systematically assess the function of thousands of NDUFAF6 genetic variants. Guided by these data, biochemical analyses and cross-linking mass spectrometry, we discovered that the CIAF NDUFAF6 facilitates incorporation of NDUFS8 into CI and reveal that NDUFS8 overexpression rectifies NDUFAF6 deficiency. Our data further provide experimental support of pathogenicity for seven novel NDUFAF6 variants associated with human pathology and introduce functional evidence for over 5,000 additional variants. Overall, our work defines the molecular function of NDUFAF6 and provides a clinical resource for aiding diagnosis of NDUFAF6-related diseases.


Assuntos
Complexo I de Transporte de Elétrons , Doenças Mitocondriais , Proteínas Mitocondriais , Humanos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Mitocôndrias/metabolismo , Mitocôndrias/genética
2.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352460

RESUMO

Inter-organellar communication is critical for cellular metabolic homeostasis. One of the most abundant inter-organellar interactions are those at the endoplasmic reticulum and mitochondria contact sites (ERMCS). However, a detailed understanding of the mechanisms governing ERMCS regulation and their roles in cellular metabolism are limited by a lack of tools that permit temporal induction and reversal. Through unbiased screening approaches, we identified fedratinib, an FDA-approved drug, that dramatically increases ERMCS abundance by inhibiting the epigenetic modifier BRD4. Fedratinib rapidly and reversibly modulates mitochondrial and ER morphology and alters metabolic homeostasis. Moreover, ERMCS modulation depends on mitochondria electron transport chain complex III function. Comparison of fedratinib activity to other reported inducers of ERMCS revealed common mechanisms of induction and function, providing clarity and union to a growing body of experimental observations. In total, our results uncovered a novel epigenetic signaling pathway and an endogenous metabolic regulator that connects ERMCS and cellular metabolism.

3.
Mol Cell ; 84(5): 981-989.e7, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38295803

RESUMO

Coenzyme Q (CoQ) is a redox lipid that fulfills critical functions in cellular bioenergetics and homeostasis. CoQ is synthesized by a multi-step pathway that involves several COQ proteins. Two steps of the eukaryotic pathway, the decarboxylation and hydroxylation of position C1, have remained uncharacterized. Here, we provide evidence that these two reactions occur in a single oxidative decarboxylation step catalyzed by COQ4. We demonstrate that COQ4 complements an Escherichia coli strain deficient for C1 decarboxylation and hydroxylation and that COQ4 displays oxidative decarboxylation activity in the non-CoQ producer Corynebacterium glutamicum. Overall, our results substantiate that COQ4 contributes to CoQ biosynthesis, not only via its previously proposed structural role but also via the oxidative decarboxylation of CoQ precursors. These findings fill a major gap in the knowledge of eukaryotic CoQ biosynthesis and shed light on the pathophysiology of human primary CoQ deficiency due to COQ4 mutations.


Assuntos
Células Eucarióticas , Ubiquinona , Humanos , Descarboxilação , Células Eucarióticas/metabolismo , Oxirredução , Escherichia coli/genética , Escherichia coli/metabolismo , Estresse Oxidativo , Proteínas Mitocondriais/metabolismo
4.
Nat Chem Biol ; 20(2): 132-133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884804
5.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014142

RESUMO

Coenzyme Q (CoQ) is a redox lipid that fulfills critical functions in cellular bioenergetics and homeostasis. CoQ is synthesized by a multi-step pathway that involves several COQ proteins. Two steps of the eukaryotic pathway, the decarboxylation and hydroxylation of position C1, have remained uncharacterized. Here, we provide evidence that these two reactions occur in a single oxidative decarboxylation step catalyzed by COQ4. We demonstrate that COQ4 complements an Escherichia coli strain deficient for C1 decarboxylation and hydroxylation and that COQ4 displays oxidative decarboxylation activity in the non-CoQ producer Corynebacterium glutamicum. Overall, our results substantiate that COQ4 contributes to CoQ biosynthesis, not only via its previously proposed structural role, but also via oxidative decarboxylation of CoQ precursors. These findings fill a major gap in the knowledge of eukaryotic CoQ biosynthesis, and shed new light on the pathophysiology of human primary CoQ deficiency due to COQ4 mutations.

6.
Nat Cell Biol ; 25(11): 1616-1624, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813972

RESUMO

Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor composed of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing and targeted uptake assays, we reveal that Hem25p-a mitochondrial glycine transporter required for haem biosynthesis-doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae. Mitochondria lacking Hem25p failed to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enabled robust IPP uptake and incorporation into the CoQ biosynthetic pathway. HEM25 orthologues from diverse fungi, but not from metazoans, were able to rescue hem25∆ CoQ deficiency. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in fungi.


Assuntos
Doenças Mitocondriais , Proteínas de Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ataxia/genética , Ataxia/metabolismo , Mitocôndrias/metabolismo , Ubiquinona/genética , Ubiquinona/metabolismo
7.
bioRxiv ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993473

RESUMO

Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor comprised of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing, and targeted uptake assays, we reveal that Hem25p-a mitochondrial glycine transporter required for heme biosynthesis-doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae. Mitochondria lacking Hem25p fail to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enables robust IPP uptake demonstrating that Hem25p is sufficient for IPP transport. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in yeast.

8.
J Biol Chem ; 299(3): 102981, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739946

RESUMO

Chalcone isomerases (CHIs) have well-established roles in the biosynthesis of plant flavonoid metabolites. Saccharomyces cerevisiae possesses two predicted CHI-like proteins, Aim18p (encoded by YHR198C) and Aim46p (YHR199C), but it lacks other enzymes of the flavonoid pathway, suggesting that Aim18p and Aim46p employ the CHI fold for distinct purposes. Here, we demonstrate using proteinase K protection assays, sodium carbonate extractions, and crystallography that Aim18p and Aim46p reside on the mitochondrial inner membrane and adopt CHI folds, but they lack select active site residues and possess an extra fungal-specific loop. Consistent with these differences, Aim18p and Aim46p lack CHI activity and also the fatty acid-binding capabilities of other CHI-like proteins, but instead bind heme. We further show that diverse fungal homologs also bind heme and that Aim18p and Aim46p possess structural homology to a bacterial hemoprotein. Collectively, our work reveals a distinct function and cellular localization for two CHI-like proteins, introduces a new variation of a hemoprotein fold, and suggests that ancestral CHI-like proteins were hemoproteins.


Assuntos
Liases Intramoleculares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Flavonoides/metabolismo , Liases Intramoleculares/química , Liases Intramoleculares/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Trends Biochem Sci ; 48(5): 463-476, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36702698

RESUMO

Coenzyme Q (CoQ) is a remarkably hydrophobic, redox-active lipid that empowers diverse cellular processes. Although most known for shuttling electrons between mitochondrial electron transport chain (ETC) complexes, the roles for CoQ are far more wide-reaching and ever-expanding. CoQ serves as a conduit for electrons from myriad pathways to enter the ETC, acts as a cofactor for biosynthetic and catabolic reactions, detoxifies damaging lipid species, and engages in cellular signaling and oxygen sensing. Many open questions remain regarding the biosynthesis, transport, and metabolism of CoQ, which hinders our ability to treat human CoQ deficiency. Here, we recount progress in filling these knowledge gaps, highlight unanswered questions, and underscore the need for novel tools to enable discoveries and improve the treatment of CoQ-related diseases.


Assuntos
Doenças Mitocondriais , Ubiquinona , Humanos , Ubiquinona/metabolismo , Doenças Mitocondriais/metabolismo , Oxirredução , Ataxia/metabolismo , Lipídeos
10.
Mol Cell ; 82(22): 4307-4323.e10, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36306796

RESUMO

Coenzyme Q (CoQ) is a redox-active lipid essential for core metabolic pathways and antioxidant defense. CoQ is synthesized upon the mitochondrial inner membrane by an ill-defined "complex Q" metabolon. Here, we present structure-function analyses of a lipid-, substrate-, and NADH-bound complex comprising two complex Q subunits: the hydroxylase COQ7 and the lipid-binding protein COQ9. We reveal that COQ7 adopts a ferritin-like fold with a hydrophobic channel whose substrate-binding capacity is enhanced by COQ9. Using molecular dynamics, we further show that two COQ7:COQ9 heterodimers form a curved tetramer that deforms the membrane, potentially opening a pathway for the CoQ intermediates to translocate from the bilayer to the proteins' lipid-binding sites. Two such tetramers assemble into a soluble octamer with a pseudo-bilayer of lipids captured within. Together, these observations indicate that COQ7 and COQ9 cooperate to access hydrophobic precursors within the membrane and coordinate subsequent synthesis steps toward producing CoQ.


Assuntos
Membranas Mitocondriais , Ubiquinona , Humanos , Ubiquinona/química , Membranas Mitocondriais/metabolismo , Proteínas de Transporte , Lipídeos
11.
Cell Chem Biol ; 27(6): 647-656.e6, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32413285

RESUMO

The BCL-2 family is composed of anti- and pro-apoptotic members that respectively protect or disrupt mitochondrial integrity. Anti-apoptotic overexpression can promote oncogenesis by trapping the BCL-2 homology 3 (BH3) "killer domains" of pro-apoptotic proteins in a surface groove, blocking apoptosis. Groove inhibitors, such as the relatively large BCL-2 drug venetoclax (868 Da), have emerged as cancer therapies. BFL-1 remains an undrugged oncogenic protein and can cause venetoclax resistance. Having identified a unique C55 residue in the BFL-1 groove, we performed a disulfide tethering screen to determine if C55 reactivity could enable smaller molecules to block BFL-1's BH3-binding functionality. We found that a disulfide-bearing N-acetyltryptophan analog (304 Da adduct) effectively targeted BFL-1 C55 and reversed BFL-1-mediated suppression of mitochondrial apoptosis. Structural analyses implicated the conserved leucine-binding pocket of BFL-1 as the interaction site, resulting in conformational remodeling. Thus, therapeutic targeting of BFL-1 may be achievable through the design of small, cysteine-reactive drugs.


Assuntos
Apoptose/efeitos dos fármacos , Dissulfetos/farmacologia , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Dissulfetos/química , Relação Dose-Resposta a Droga , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Modelos Moleculares , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Triptofano/análogos & derivados , Triptofano/química , Triptofano/farmacologia
12.
Cell Rep ; 24(13): 3393-3403.e5, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257201

RESUMO

Cancer cells overexpress a diversity of anti-apoptotic BCL-2 family proteins, such as BCL-2, MCL-1, and BFL-1/A1, to enforce cellular immortality. Thus, intensive drug development efforts have focused on targeting this class of oncogenic proteins to overcome treatment resistance. Whereas a selective BCL-2 inhibitor has been FDA approved and several small molecule inhibitors of MCL-1 have recently entered phase I clinical testing, BFL-1/A1 remains undrugged. Here, we developed a series of stapled peptide design principles to engineer a functionally selective and cell-permeable BFL-1/A1 inhibitor that is specifically cytotoxic to BFL-1/A1-dependent human cancer cells. Because cancers harbor a diversity of resistance mechanisms and typically require multi-agent treatment, we further investigated BFL-1/A1 co-dependencies by mining a genome-scale CRISPR-Cas9 screen. We identified ataxia-telangiectasia-mutated (ATM) kinase as a BFL-1/A1 co-dependency in acute myeloid leukemia (AML), which informed the validation of BFL-1/A1 and ATM inhibitor co-treatment as a synergistic approach to subverting apoptotic resistance in cancer.


Assuntos
Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Células HEK293 , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
13.
Structure ; 26(1): 153-160.e4, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29276033

RESUMO

BCL-2 family proteins are high-priority cancer targets whose structures provide essential blueprints for drug design. Whereas numerous structures of anti-apoptotic BCL-2 protein complexes with α-helical BH3 peptides have been reported, the corresponding panel of apo structures remains incomplete. Here, we report the crystal structure of apo BFL-1 at 1.69-Å resolution, revealing similarities and key differences among unliganded anti-apoptotic proteins. Unlike all other BCL-2 proteins, apo BFL-1 contains a surface-accessible cysteine within its BH3-binding groove, allowing for selective covalent targeting by a NOXA BH3-based stapled peptide inhibitor. The crystal structure of this complex demonstrated the sulfhydryl bond and fortuitous interactions between the acrylamide-bearing moiety and a newly formed hydrophobic cavity. Comparison of the apo and BH3-liganded structures further revealed an induced conformational change. The two BFL-1 structures expand our understanding of the surface landscapes available for therapeutic targeting so that the apoptotic blockades of BFL-1-dependent cancers can be overcome.


Assuntos
Antineoplásicos/química , Apoproteínas/química , Antígenos de Histocompatibilidade Menor/química , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas/química , Sequência de Aminoácidos , Antineoplásicos/síntese química , Apoproteínas/antagonistas & inibidores , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Modelos Moleculares , Fragmentos de Peptídeos/síntese química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas/síntese química , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Cell Chem Biol ; 23(9): 1123-1134, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27617850

RESUMO

Anti-apoptotic BCL-2 family proteins block cell death by trapping the critical α-helical BH3 domains of pro-apoptotic members in a surface groove. Cancer cells hijack this survival mechanism by overexpressing a spectrum of anti-apoptotic members, mounting formidable apoptotic blockades that resist chemotherapeutic treatment. Drugging the BH3-binding pockets of anti-apoptotic proteins has become a highest-priority goal, fueled by the clinical success of ABT-199, a selective BCL-2 inhibitor, in reactivating apoptosis in BCL-2-dependent cancers. BFL-1 is a BCL-2 homolog implicated in melanoma, lymphoma, and other cancers, and remains undrugged. A natural juxtaposition of two unique cysteines at the binding interface of the NOXA BH3 helix and BFL-1 pocket informed the development of stapled BH3 peptides bearing acrylamide warheads to irreversibly inhibit BFL-1 by covalent targeting. Given the frequent proximity of native cysteines to regulatory binding surfaces, covalent stapled peptide inhibitors provide a new therapeutic strategy for targeting pathologic protein interactions.


Assuntos
Cisteína/farmacologia , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisteína/química , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Modelos Moleculares , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
15.
ACS Chem Biol ; 11(11): 3146-3153, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27643505

RESUMO

Basic helix-loop-helix (bHLH) transcription factors play critical roles in organism development and disease by regulating cell proliferation and differentiation. Transcriptional activity, whether by bHLH homo- or heterodimerization, is dependent on protein-protein and protein-DNA interactions mediated by α-helices. Thus, α-helical decoys have been proposed as potential targeted therapies for pathologic bHLH transcription. Here, we developed a library of stabilized α-helices of OLIG2 (SAH-OLIG2) to test the capacity of hydrocarbon-stapled peptides to disrupt OLIG2 homodimerization, which drives the development and chemoresistance of glioblastoma multiforme, one of the deadliest forms of human brain cancer. Although stapling successfully reinforced the α-helical structure of bHLH constructs of varying length, sequence-specific dissociation of OLIG2 dimers from DNA was not achieved. Re-evaluation of the binding determinants for OLIG2 self-association and stability revealed an unanticipated role of the C-terminal domain. These data highlight potential pitfalls in peptide-based targeting of bHLH transcription factors given the liabilities of their positively charged amino acid sequences and multifactorial binding determinants.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hidrocarbonetos/química , Peptídeos/química , Animais , Células COS , Dimerização , Humanos , Mimetismo Molecular
16.
Mol Cell ; 57(5): 873-886, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25684204

RESUMO

BCL-2 is a negative regulator of apoptosis implicated in homeostatic and pathologic cell survival. The canonical anti-apoptotic mechanism involves entrapment of activated BAX by a groove on BCL-2, preventing BAX homo-oligomerization and mitochondrial membrane poration. The BCL-2 BH4 domain also confers anti-apoptotic functionality, but the mechanism is unknown. We find that a synthetic α-helical BH4 domain binds to BAX with nanomolar affinity and independently inhibits the conformational activation of BAX. Hydrogen-deuterium exchange mass spectrometry demonstrated that the N-terminal conformational changes in BAX induced by a triggering BIM BH3 helix were suppressed by the BCL-2 BH4 helix. Structural analyses localized the BH4 interaction site to a groove formed by residues of α1, α1-α2 loop, and α2-α3 and α5-α6 hairpins on the BAX surface. These data reveal a previously unappreciated binding site for targeted inhibition of BAX and suggest that the BCL-2 BH4 domain may participate in apoptosis blockade by a noncanonical interaction mechanism.


Assuntos
Apoptose , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína X Associada a bcl-2/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Medição da Troca de Deutério/métodos , Células HeLa , Humanos , Espectrometria de Massas/métodos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...