Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38674680

RESUMO

The aim of this Special Issue was to provide readers with a holistic, systematic, and integrative approach to microbial processes involved in the production of selected foods, nutraceuticals, and bioactive materials by using modern biotechnological tools [...].

2.
Gels ; 9(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37754363

RESUMO

Alginate encapsulation is a well-known technique used to protect microorganisms from adverse conditions. However, it is also known that the viscosity of the alginate is dependent on its composition and degree of polymerization and that thermal treatments, such as pasteurization and sterilization, can affect the structure of the polymer and decrease its protection efficiency. The goal of this study was to evaluate the protective effect of encapsulation, using alginates of different viscosities treated at different temperatures, on Lactiplantibacillus plantarum 299v under in vitro gastrointestinal conditions and cold storage at 4 °C and -15 °C, respectively. Steady- and dynamic-shear rheological tests were used to characterize the polymers. Thermal treatments profoundly affected the rheological characteristics of alginates with high and low viscosity. However, the solutions and gels of the low-viscosity alginate were more affected at a temperature of 117 °C. The capsules elaborated with high-viscosity alginate solution and pasteurized at 63 °C for 30 min provided better protection to the cells of L. plantarum 299v under simulated gastrointestinal and cold storage conditions.

3.
Innov Food Sci Emerg Technol ; 83: 103218, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36467515

RESUMO

Natural catastrophes include those of biological origin as the pandemic provoked by virus SARS CoV2, earthquakes, flooding and hurricanes among others, while provoked ones are mainly those related to wars and social movements. These situations may cause food shortage and challenge food safety and security systems. In this review, strategies to produce foods aimed to alleviate food needs before, during and after catastrophic conditions are described based on the supply of various processed, intermediate and low moisture foods and three categories of food supplies are depicted based on the nature of the adverse conditions, Also, relevant patents on on innovative food preparations and containers for disaster areas are discussed. Innovation to produce appropriate and nutritious foods for disaster zones may include food bags containing individual packages of high protein, high fiber/vitamins and carbohydrate/oils ingredients in dried/vitreous state. Additionally, the role of food structure on food preservation is mentioned in the context of ready to eat, nutritious and sensory acceptable food supplies during natural or provoked catastrophes is also reported.

4.
Foods ; 11(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35885241

RESUMO

The stabilization of Pickering emulsions by nanoparticles has drawn great interest in the field of food science and technology. In this study, α-Lactalbumin nanoparticles prepared by the desolvation and cross-linking method from protein solutions with initial pH values of 9 and 11 were used to stabilize squalene-rich amaranth oil Pickering o/w emulsions. The effect of different concentrations of nanoparticles on the size, size distribution, ζ potential, and emulsion stability was evaluated using dynamic light scattering, electron microscopy, and light backscattering. Dependence of the emulsions' droplet size on the nanoparticle concentration was observed, and the critical coverage ratio was reached when 5-10% nanoparticles concentration was used. Our findings suggest that α-LA nanoparticles at a 10% concentration can be used as novel stabilizers for Pickering emulsions to provide protection for beneficial lipophilic bioactive compounds. This is the first time that native α-LA nanoparticles have been used as stabilizers of Pickering emulsions.

5.
Plant Foods Hum Nutr ; 76(1): 12-19, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33245465

RESUMO

High-sucrose high-fat diets are one of the causes of malnutrition, and may induce metabolic alterations such as dyslipidemia, insulin resistance, and adipogenesis. The objective of this work was to investigate the possible protective effect of traditionally edible avocado creole peel (Persea americana Mill var. drymifolia) when consuming a high-sucrose and fat diet (HSFD). The experimental animal model included 21 male Wistar rats divided in three groups: the control group received a standard diet of purina®, the HSFD group received a high fat diet plus 30% sucrose in drinking water, and finally the HSFD + AP group received the HSFD diet supplemented with 200 mg/kg of avocado peel for 14 weeks. It was observed that alterations included higher cholesterol, glucose, insulin, fatty acids and TNF-α levels as well as lower HDL, and adiponectin. The addition of avocado peel reverted some of these effects, resulting in normal values of triglicerides, insulin and adiponectin, while attenuated the levels of total cholesterol. Liver weight of the group added with avocado peel was similar to the control group. The neuronal density in the hippocampal areas CA1 and dentate gyrus DC were lower in the high glucose fat group, while the ingestion of the avocado peel showed a neuroprotective effect. The avocado creole ingestion reverted or attenuated most of the metabolic effects caused by a high-sucrose fat diet which was attributed to the compounds detected by HPLC-MS and GC-MS that included bioactive polyphenols such as flavanol quercetin, flavanone naringenin, flavan 3-ol catechin, cyanidin 3-glucoside, pelargonidin 3-glucoside, pelargonidin 3-rhamnoside, hydroxydelphinidin, eugenol and estragole.


Assuntos
Persea , Animais , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Masculino , Ratos , Ratos Wistar , Sacarose
6.
Foods ; 9(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348751

RESUMO

The release kinetics, stability, and antioxidant capacity of thyme essential oil polymeric nanocapsules as a function of encapsulating (poly-ε-caprolactone and ethylcellulose) and stabilizing (polyvinyl alcohol and Pluronic® F-127) polymers were established. Samples were evaluated in terms of particle size, zeta potential, release kinetics, calorimetry, infrared spectra, antioxidant capacity, and diffuse reflectance. The particle size obtained was below 500 nm in all cases, ensuring nanometric size. Zeta potential as a function of the stabilizing polymer. Encapsulation efficiency was higher in the samples that contained ethyl cellulose (around 70%), associated with its affinity for the molecules contained in the essential oil. Differential scanning calorimetry revealed a strong dependence on the encapsulating polymers as a function of the melting temperatures obtained. Infrared spectra confirmed that the polymeric nanocapsules had the typical bands of the aromatic groups of thyme essential oil. The antioxidant capacity evaluated is a function exclusively of the active content in the nucleolus of the nanocapsules. Nanoencapsulation was not a significant factor. Diffuse reflectance revealed high physical stability of the dispersions related directly to the particle size and zeta potential obtained (either by ionic or steric effect). These findings confirm favorable characteristics that allow proposing these systems for potential applications in food processing and preservation.

7.
J Food Sci ; 85(6): 1805-1814, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32497329

RESUMO

Papaya fruit, widely consumed around the world, is mechanically and structurally affected by several enzymatic processes during ripening, where pectin methylesterase plays a key role. Hence, the aim of this work was to evaluate possible correlations among physicochemical changes, mechanical parameters, viscoelastic behavior, and enzyme activity of pectin methylesterase to provide information about the softening phenomenon by applying the Maxwell and Peleg models. Mechanical parameters were estimated by texture profile analysis, enzyme activity by Michaelis-Menten parameters, and viscoelastic behavior by relaxation test responses fitted to these models. The Maxwell model described properly mechanical changes during ripening, displaying a better adjustment (R2 > 0.97) than the Peleg model (0.80 < R2 < 0.84). Pearson correlation analysis (P ≤ 0.01) indicated an inversely proportional relation among firmness, total soluble solids, and the first elastic element of the Maxwell model. Besides, the PME Michaelis-Menten affinity constant showed a correlation between the first elastic element and the first viscoelastic element of the Maxwell model. Findings of this work pointed out that the first Maxwell elastic element could explain structural changes as papaya ripening advance, associated with pectin methylesterase activity, cell wall disruption, and cell assembling into the tissue. PRACTICAL APPLICATION: Mechanical and viscoelastic behavior of papaya fruit tissue were described by the Maxwell model associating both viscous and elastic elements to the softening process. The results provide background and practical knowledge to describe structural changes during the ripening process of papaya depending on its enzymatic activity. Outcomes could be further applied to understand changes in other fruits or food matrixes that soften during postharvest, storage, and food chain supply processes.


Assuntos
Hidrolases de Éster Carboxílico/química , Carica/enzimologia , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/química , Carica/química , Carica/crescimento & desenvolvimento , Parede Celular/química , Parede Celular/enzimologia , Estabilidade Enzimática , Frutas/química , Frutas/enzimologia , Cinética , Viscosidade
8.
J Agric Food Chem ; 67(11): 3256-3265, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30811185

RESUMO

Bovine α-lactalbumin (α-LA) was chemically modified by the covalent attachment of fatty acid residues of different length (lauroyl, palmitoyl, and stearoyl) to modify its functional and antioxidant properties. Structural changes, functional properties, and antioxidant capacity in the pH interval between 3 and 10 were analyzed. Surface properties were improved. The esterification increased the hydrophobic interactions leading to a reduction in the solubility dependent on the incorporation ratio of the fatty acid residues. Improvement in emulsifying, foaming, and antioxidant properties were observed when the length of the fatty acid chains was short and mostly at a basic pH. With these results in mind, experiments could be conducted for the technological applications of these derivatives in the food, pharmaceutical, and cosmetic industries.


Assuntos
Ácidos Graxos/química , Lactalbumina/química , Animais , Antioxidantes/química , Bovinos , Esterificação , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular
9.
Colloids Surf B Biointerfaces ; 162: 193-201, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29190471

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) production has been used for pigment, food and cosmetic industry and more recently, shaped as belts for treatment of contaminated water, self-cleaning windows and biomedical applications. However, the toxicological data have demonstrated that TiO2 NPs inhalation induce inflammation in in vivo models and in vitro exposure leads to cytotoxicity and DNA damage. Dermal exposure has limited adverse effects and the possible risks for implants used for tissue regeneration is still under research. Then, it has been difficult to establish a straight statement about TiO2 NPs toxicity since route of exposure and shapes of nanoparticles play an important role in the effects. In this study we aimed to investigate the effect of three different types of TiO2 NPs (industrial, food-grade and belts) dispersed in fetal bovine serum (FBS) and saline solution (SS) on microvessel network, angiogenesis gene expression and femur ossification using a chick embryo model after an acute exposure of NPs on the day 7 after eggs fertilization. Microvascular density of chorioallantoic membrane (CAM) was analyzed after 7days of NPs injection and vehicles induced biological effects per se. NPs dispersed in FBS or SS have slight differences in microvascular density, mainly opposite effect on angiogenesis gene expression and no effects on femur ossification for NPs dispersed in SS. Interestingly, NPs shaped as belts dramatically prevented the alterations in ossification induced by FBS used as vehicle.


Assuntos
Membrana Corioalantoide/efeitos dos fármacos , Fêmur/efeitos dos fármacos , Nanopartículas Metálicas/química , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Titânio/farmacologia , Animais , Biomarcadores/metabolismo , Bovinos , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/metabolismo , Fêmur/crescimento & desenvolvimento , Fêmur/metabolismo , Feto , Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/ultraestrutura , NF-kappa B/genética , NF-kappa B/metabolismo , Osteogênese/genética , Tamanho da Partícula , Titânio/sangue , Titânio/química , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Zigoto
10.
J Sci Food Agric ; 96(3): 1027-36, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25821076

RESUMO

BACKGROUND: The search for natural, novel, high-quality, stable food ingredients is an ongoing practice in the food industry. Pulp of borojo (Borojoa patinoi Cuatrecasas), which is a fruit of the Colombian Pacific region, can be separated into three phases: liquid (LP), medium (MP) and solid (SP) phases. The objective of this work was to evaluate the effect of the three-phase composition and gum arabic on their glass transitions temperatures (T(g)). The best mixture, LP-MP, MP-SP and LP-SP and gum arabic (GA) was identified by response surface methodology. RESULTS: When adding GA to SP borojo phase in a 1:1 proportion, the resulting T(g) of the mixture was 132.27 °C whereas Tg for GA and SP-phase were 154.89 °C and 79.86 °C respectively, which supported this combination as attractive from a processing perspective and supports an industrial advantage of using borojo as food ingredient. Phases were characterized by high-performance liquid chromatography, Fourier transform infrared spectroscopy, confocal laser scanning microscopy and mass spectrometry. Low molecular weight compounds such as fructose for MP lowered T(g) whereas the presence of lignin increased T(g) of the mixtures as with the SP. CONCLUSIONS: The addition of GA significantly increased T(g) of borojo phases so leading to propose them as novel food processing materials.


Assuntos
Manipulação de Alimentos , Goma Arábica , Cromatografia Líquida de Alta Pressão , Colômbia , Indústria Alimentícia , Frutas , Vidro , Humanos , Temperatura de Transição
11.
Environ Res ; 136: 424-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25460664

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) studies have been performed using relatively high NPs concentration under acute exposure and limited studies have compared shape effects. We hypothesized that midterm exposure to low TiO2 NPs concentration in lung epithelial cells induces carcinogenic characteristics modulated partially by NPs shape. To test our hypothesis we synthesized NPs shaped as belts (TiO2-B) using TiO2 spheres (TiO2-SP) purchased from Sigma Aldrich Co. Then, lung epithelial A549 cells were low-exposed (10 µg/cm(2)) to both shapes during 7 days and internalization, cytokine release and invasive potential were determined. Results showed greater TiO2-B effect on agglomerates size, cell size and granularity than TiO2-SP. Agglomerates size in cell culture medium was 310 nm and 454 nm for TiO2-SP and TiO2-B, respectively; TiO2-SP and TiO2-B induced 23% and 70% cell size decrease, respectively, whilst TiO2-SP and TiO2-B induced 7 and 14-fold of granularity increase. NOx production was down-regulated (31%) by TiO2-SP and up-regulated (70%) by TiO2-B. Both NPs induced a transient cytokine release (IL-2, IL-6, IL-8, IL-4, IFN-γ, and TNF-α) after 4 days, but cytokines returned to basal levels in TiO2-SP exposed cells while TiO2-B induced a down-regulation after 7 days. Midterm exposure to both shapes of NPs induced capability to degrade cellular extracellular matrix components from chorioallantoic membrane and Ki-67 marker showed that TiO2-B had higher proliferative potential than TiO2-SP. We conclude that midterm exposure to low NPs concentration of NPs has an impact in the acquisition of new characteristics of exposed cells and NPs shape influences cellular outcome.


Assuntos
Membrana Corioalantoide/efeitos dos fármacos , Inflamação/induzido quimicamente , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas , Titânio/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , Microscopia Eletrônica , Óxido Nítrico/metabolismo
12.
Carbohydr Polym ; 98(2): 1449-57, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24053826

RESUMO

The effect of mechanical damage on wheat starch granules surface, at a microstructural level, was investigated by scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM), and image textural analysis. The SEM and ESEM images of the native sample showed that the starch granules had smooth, flat surfaces and smooth edges. The samples with higher damaged starch content exhibited granular distortion, irregularity and less uniformity. The fractal dimension of contour parameter increased with mechanical damage, indicating that the surface irregularities quantitatively increased due to the damage. The surfaces of damaged granules showed depressions of different shapes and sizes. The roughness parameters and fractal dimension of the surface increased as a result of the mechanical damage. The surface of damaged granules showed higher entropy and lower homogeneity values when damaged starch increased. The results indicated that the mechanical process caused structural modifications at nano level.


Assuntos
Grânulos Citoplasmáticos/ultraestrutura , Amido/química , Triticum/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Estresse Mecânico
13.
J Sci Food Agric ; 91(14): 2594-600, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21935958

RESUMO

BACKGROUND: The food and pharmaceutical industries handle a number of compounds in the form of agglomerates which must be put into contact with water for rehydration purposes. In this work, liquid-solid interaction between water and maltodextrin thick-compact agglomerates was studied at different constituent particle sizes for two compression forces (75 and 225 MPa). RESULTS: Rapid droplet spreading was observed which was similar in radius to the expected one for ideal, flat surfaces. Contact angle determinations reported oscillations of this parameter throughout the experiments, being indicative of droplet recoiling on top of the agglomerate. Recoiling was more frequent in samples obtained at 225 MPa for agglomerate formation. Agglomerates obtained at 75 MPa exhibited more penetration of the water. Competition between dissolution of maltodextrin and penetration of the water was, probably, the main mechanism involved in droplet recoiling. Micrographs of the wetting marks were characterized by means of image analysis and the measurements suggested more symmetry of the wetting mark at higher compression force. CONCLUSION: Differences found in the evaluated parameters for agglomerates were mainly due to compaction force used. No significant effect of particle size in recoiling, penetration of water into the agglomerate, surface texture and symmetry was observed.


Assuntos
Aditivos Alimentares/química , Polissacarídeos/química , Água/análise , Algoritmos , Dessecação , Interações Hidrofóbicas e Hidrofílicas , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Varredura , Modelos Químicos , Tamanho da Partícula , Permeabilidade , Polissacarídeos/ultraestrutura , Porosidade , Solubilidade , Propriedades de Superfície , Tensão Superficial , Viscosidade , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...