Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone Res ; 12(1): 12, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395992

RESUMO

Piezo proteins are mechanically activated ion channels, which are required for mechanosensing functions in a variety of cell types. While we and others have previously demonstrated that the expression of Piezo1 in osteoblast lineage cells is essential for bone-anabolic processes, there was only suggestive evidence indicating a role of Piezo1 and/or Piezo2 in cartilage. Here we addressed the question if and how chondrocyte expression of the mechanosensitive proteins Piezo1 or Piezo2 controls physiological endochondral ossification and pathological osteoarthritis (OA) development. Mice with chondrocyte-specific inactivation of Piezo1 (Piezo1Col2a1Cre), but not of Piezo2, developed a near absence of trabecular bone below the chondrogenic growth plate postnatally. Moreover, all Piezo1Col2a1Cre animals displayed multiple fractures of rib bones at 7 days of age, which were located close to the growth plates. While skeletal growth was only mildly affected in these mice, OA pathologies were markedly less pronounced compared to littermate controls at 60 weeks of age. Likewise, when OA was induced by anterior cruciate ligament transection, only the chondrocyte inactivation of Piezo1, not of Piezo2, resulted in attenuated articular cartilage degeneration. Importantly, osteophyte formation and maturation were also reduced in Piezo1Col2a1Cre mice. We further observed increased Piezo1 protein abundance in cartilaginous zones of human osteophytes. Finally, we identified Ptgs2 and Ccn2 as potentially relevant Piezo1 downstream genes in chondrocytes. Collectively, our data do not only demonstrate that Piezo1 is a critical regulator of physiological and pathological endochondral ossification processes, but also suggest that Piezo1 antagonists may be established as a novel approach to limit osteophyte formation in OA.


Assuntos
Cartilagem Articular , Osteoartrite , Osteófito , Animais , Humanos , Camundongos , Cartilagem Articular/patologia , Condrócitos , Canais Iônicos/genética , Osteoartrite/genética , Osteogênese/genética , Osteófito/metabolismo
2.
FASEB J ; 38(4): e23489, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38407813

RESUMO

Physical activity-induced mechanical stimuli play a crucial role in preserving bone mass and structure by promoting bone formation. While the Wnt pathway is pivotal for mediating the osteoblast response to loading, the exact mechanisms are not fully understood. Here, we found that mechanical stimulation induces osteoblastic Wnt1 expression, resulting in an upregulation of key osteogenic marker genes, including Runx2 and Sp7, while Wnt1 knockdown using siRNA prevented these effects. RNAseq analysis identified Plat as a major target through which Wnt1 exerts its osteogenic influence. This was corroborated by Plat depletion using siRNA, confirming its positive role in osteogenic differentiation. Moreover, we demonstrated that mechanical stimulation enhances Plat expression, which, in turn leads to increased expression of osteogenic markers like Runx2 and Sp7. Notably, Plat depletion by siRNA prevented this effect. We have established that Wnt1 regulates Plat expression by activating ß-Catenin. Silencing Wnt1 impairs mechanically induced ß-Catenin activation, subsequently reducing Plat expression. Furthermore, our findings showed that Wnt1 is essential for osteoblasts to respond to mechanical stimulation and induce Runx2 and Sp7 expression, in part through the Wnt1/ß-Catenin/Plat signaling pathway. Additionally, we observed significantly reduced Wnt1 and Plat expression in bones from ovariectomy (OVX)-induced and age-related osteoporotic mouse models compared with non-OVX and young mice, respectively. Overall, our data suggested that Wnt1 and Plat play significant roles in mechanically induced osteogenesis. Their decreased expression in bones from OVX and aged mice highlights their potential involvement in post-menopausal and age-related osteoporosis, respectively.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteogênese , Animais , Feminino , Camundongos , beta Catenina/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Osteoblastos , RNA Interferente Pequeno , Via de Sinalização Wnt , Ativador de Plasminogênio Tecidual/metabolismo
3.
J Orthop Res ; 42(3): 568-577, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38124294

RESUMO

As scientific advancements continue to reshape the world, it becomes increasingly crucial to uphold ethical standards and minimize the potentially adverse impact of research activities. In this context, the implementation of the 3R principles-Replacement, Reduction, and Refinement-has emerged as a prominent framework for promoting ethical research practices in the use of animals. This article aims to explore recent advances in integrating the 3R principles into fracture healing research, highlighting their potential to enhance animal welfare, scientific validity, and societal trust. The review focuses on in vitro, in silico, ex vivo, and refined in vivo methods, which have the potential to replace, reduce, and refine animal experiments in musculoskeletal, bone, and fracture healing research. Here, we review material that was presented at the workshop "Implementing 3R Principles into Fracture Healing Research" at the 2023 Orthopedic Research Society (ORS) Annual Meeting in Dallas, Texas.


Assuntos
Experimentação Animal , Consolidação da Fratura , Animais , Bem-Estar do Animal , Ética em Pesquisa , Texas
4.
Cell Mol Biol Lett ; 28(1): 76, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777764

RESUMO

During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.


Assuntos
Osteoartrite , Osteoporose , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/fisiologia , Osteoartrite/metabolismo , Diferenciação Celular , Senescência Celular
5.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298085

RESUMO

Mast cells may contribute to osteoporosis development, because patients with age-related or post-menopausal osteoporosis exhibit more mast cells in the bone marrow, and mastocytosis patients frequently suffer from osteopenia. We previously showed that mast cells crucially regulated osteoclastogenesis and bone loss in ovariectomized, estrogen-depleted mice in a preclinical model for post-menopausal osteoporosis and found that granular mast cell mediators were responsible for these estrogen-dependent effects. However, the role of the key regulator of osteoclastogenesis, namely, receptor activator of NFκB ligand (RANKL), which is secreted by mast cells, in osteoporosis development has, to date, not been defined. Here, we investigated whether mast-cell-derived RANKL participates in ovariectomy (OVX)-induced bone loss by using female mice with a conditional Rankl deletion. We found that this deletion in mast cells did not influence physiological bone turnover and failed to protect against OVX-induced bone resorption in vivo, although we demonstrated that RANKL secretion was significantly reduced in estrogen-treated mast cell cultures. Furthermore, Rankl deletion in mast cells did not influence the immune phenotype in non-ovariectomized or ovariectomized mice. Therefore, other osteoclastogenic factors released by mast cells might be responsible for the onset of OVX-induced bone loss.


Assuntos
Reabsorção Óssea , Osteoporose Pós-Menopausa , Osteoporose , Humanos , Camundongos , Feminino , Animais , Osteoclastos , Mastócitos , Osteoporose Pós-Menopausa/etiologia , Ligantes , Osteogênese , NF-kappa B/farmacologia , Reabsorção Óssea/etiologia , Osteoporose/etiologia , Estrogênios/farmacologia , Ovariectomia/efeitos adversos , Ligante RANK/genética , Ligante RANK/farmacologia
6.
Nat Commun ; 14(1): 3262, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277336

RESUMO

Mental traumatization is associated with long-bone growth retardation, osteoporosis and increased fracture risk. We revealed earlier that mental trauma disturbs cartilage-to-bone transition during bone growth and repair in mice. Trauma increased tyrosine hydroxylase-expressing neutrophils in bone marrow and fracture callus. Here we show that tyrosine hydroxylase expression in the fracture hematoma of patients correlates positively with acknowledged stress, depression, and pain scores as well as individual ratings of healing-impairment and pain-perception post-fracture. Moreover, mice lacking tyrosine hydroxylase in myeloid cells are protected from chronic psychosocial stress-induced disturbance of bone growth and healing. Chondrocyte-specific ß2-adrenoceptor-deficient mice are also protected from stress-induced bone growth retardation. In summary, our preclinical data identify locally secreted catecholamines in concert with ß2-adrenoceptor signalling in chondrocytes as mediators of negative stress effects on bone growth and repair. Given our clinical data, these mechanistic insights seem to be of strong translational relevance.


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Camundongos , Animais , Catecolaminas/metabolismo , Neutrófilos , Tirosina 3-Mono-Oxigenase/metabolismo , Calo Ósseo , Fraturas Ósseas/metabolismo , Transtornos do Crescimento , Receptores Adrenérgicos/metabolismo , Dor/metabolismo
7.
Bone ; 172: 116781, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37100360

RESUMO

External mechanostimulation applied by whole-body low-magnitude high-frequency vibration (LMHFV) was demonstrated to cause no or negative effects on fracture healing in estrogen-competent rodents, while in ovariectomized (OVX), estrogen-deficient rodents bone formation after fracture was improved. Using mice with an osteoblast-specific deletion of the estrogen receptor α (ERα), we demonstrated that ERα signaling in osteoblasts is required for both the anabolic and catabolic effects of LMHFV during bone fracture healing in OVX and non-OVX mice, respectively. Because the vibration effects mediated by ERα were strictly dependent on the estrogen status, we hypothesized different roles of ligand-dependent and -independent ERα signaling. To investigate this assumption in the present study, we used mice with a deletion of the C-terminal activation function (AF) domain-2 of the ERα receptor, which mediated ligand-dependent ERα signaling (ERαAF-20). OVX and non-OVX ERαAF-20 animals were subjected to femur osteotomy followed by vibration treatment. We revealed that estrogen-competent mice lacking the AF-2 domain were protected from LMHFV-induced impaired bone regeneration, while the anabolic effects of vibration in OVX mice were not affected by the AF-2 knockout. RNA sequencing further showed that genes involved in Hippo/Yap1-Taz and Wnt signaling were significantly downregulated upon LMHFV in the presence of estrogen in vitro. In conclusion, we demonstrated that the AF-2 domain is crucial for the negative effects of vibration during bone fracture healing in estrogen-competent mice suggesting that the osteoanabolic effects of vibration are rather mediated by ligand-independent ERα signaling.


Assuntos
Receptor alfa de Estrogênio , Consolidação da Fratura , Camundongos , Animais , Consolidação da Fratura/fisiologia , Receptor alfa de Estrogênio/genética , Furilfuramida , Receptores de Estrogênio , Mecanotransdução Celular , Ligantes , Estrogênios/fisiologia
8.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047116

RESUMO

Postmenopausal women are at an increased risk for intervertebral disc degeneration, possibly due to the decrease in oestrogen levels. Low-magnitude, high-frequency vibration (LMHFV) is applied as a therapeutic approach for postmenopausal osteoporosis; however, less is known regarding possible effects on the intervertebral disc (IVD) and whether these may be oestrogen-dependent. The present study investigated the effect of 17ß-oestradiol (E2) and LMHFV in an IVD organ culture model. Bovine IVDs (n = 6 IVDs/group) were treated with either (i) E2, (ii) LMHFV or (iii) the combination of E2 + LMHFV for 2 or 14 days. Minor changes in gene expression, cellularity and matrix metabolism were observed after E2 treatment, except for a significant increase in matrix metalloproteinase (MMP)-3 and interleukin (IL)-6 production. Interestingly, LMHFV alone induced cell loss and increased IL-6 production compared to the control. The combination of E2 + LMHFV induced a protective effect against cell loss and decreased IL-6 production compared to the LMHFV group. This indicates possible benefits of oestrogen therapy for the IVDs of postmenopausal women undergoing LMHFV exercises.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Bovinos , Feminino , Humanos , Interleucina-6/metabolismo , Sobrevivência Celular , Vibração , Técnicas de Cultura de Órgãos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo
9.
J Bone Miner Res ; 38(5): 749-764, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36891752

RESUMO

Despite considerable improvement in fracture care, 5%-10% of all fractures still heal poorly or result in nonunion formation. Therefore, there is an urgent need to identify new molecules that can be used to improve bone fracture healing. One activator of the Wnt-signaling cascade, Wnt1, has recently gained attention for its intense osteoanabolic effect on the intact skeleton. The aim of the present study was to investigate whether Wnt1 might be a promising molecule to accelerate fracture healing both in skeletally healthy and osteoporotic mice that display a diminished healing capacity. Transgenic mice for a temporary induction of Wnt1 specifically in osteoblasts (Wnt1-tg) were subjected to femur osteotomy. Non-ovariectomized and ovariectomized Wnt1-tg mice displayed significantly accelerated fracture healing based on a strong increase in bone formation in the fracture callus. Transcriptome profiling revealed that Hippo/yes1-associated transcriptional regulator (YAP)-signaling and bone morphogenetic protein (BMP) signaling pathways were highly enriched in the fracture callus of Wnt1-tg animals. Immunohistochemical staining confirmed increased activation of YAP1 and expression of BMP2 in osteoblasts in the fracture callus. Therefore, our data indicate that Wnt1 boosts bone formation during fracture healing via YAP/BMP signaling both under healthy and osteoporotic conditions. To further test a potential translational application of Wnt1, we applied recombinant Wnt1 embedded into a collagen gel during critical-size bone-defect repair. Mice treated with Wnt1 displayed increased bone regeneration compared to control mice accompanied by increased YAP1/BMP2 expression in the defect area. These findings are of high clinical relevance because they indicate that Wnt1 could be used as a new therapeutic agent to treat orthopedic complications in the clinic. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Camundongos , Animais , Consolidação da Fratura/fisiologia , Osteogênese/fisiologia , Fraturas Ósseas/metabolismo , Calo Ósseo/metabolismo , Camundongos Transgênicos , Via de Sinalização Wnt
10.
Front Immunol ; 14: 1074207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761764

RESUMO

Introduction: Clinical and preclinical data suggest accelerated bone fracture healing in subjects with an additional traumatic brain injury (TBI). Mechanistically, altered metabolism and neuro-endocrine regulations have been shown to influence bone formation after combined fracture and TBI, thereby increasing the bone content in the fracture callus. However, the early inflammatory response towards fracture and TBI has not been investigated in detail so far. This is of great importance, since the early inflammatory phase of fracture healing is known to be essential for the initiation of downstream regenerative processes for adequate fracture repair. Methods: Therefore, we analyzed systemic and local inflammatory mediators and immune cells in mice which were exposed to fracture only or fracture + TBI 6h and 24h after injury. Results: We found a dysregulated systemic immune response and significantly fewer neutrophils and mast cells locally in the fracture hematoma. Further, local CXCL10 expression was significantly decreased in the animals with combined trauma, which correlated significantly with the reduced mast cell numbers. Discussion: Since mast cells and mast cell-derived CXCL10 have been shown to increase osteoclastogenesis, the reduced mast cell numbers might contribute to higher bone content in the fracture callus of fracture + TBI mice due to decreased callus remodeling.


Assuntos
Lesões Encefálicas Traumáticas , Fraturas Ósseas , Animais , Camundongos , Calo Ósseo/metabolismo , Lesões Encefálicas Traumáticas/imunologia , Consolidação da Fratura , Fraturas Ósseas/imunologia , Osteogênese/fisiologia
11.
Bone Rep ; 19: 101686, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38163010

RESUMO

Bone has the rare capability of scarless regeneration that enables the complete restoration of the injured bone area. In recent decades, promising new technologies have emerged from basic, translational and clinical research for fracture treatment; however, 5-10 % of all bone fractures still fail to heal successfully or heal in a delayed manner. Several comorbidities and risk factors have been identified which impair bone healing and might lead to delayed bone union or non-union. Therefore, a considerable amount of research has been conducted to elucidate molecular mechanisms of successful and delayed fracture healing to gain further insights into this complex process. One focus of recent research is to investigate the complex interactions of different cell types and the action of progenitor cells during the healing process. Of particular interest is also the identification of patient-specific comorbidities and how these affect fracture healing. In this review, we discuss the recent knowledge about progenitor cells for long bone repair and the influence of comorbidities such as diabetes, postmenopausal osteoporosis, and chronic stress on the healing process. The topic selection for this review was made based on the presented studies at the 2022 annual meeting of the European Calcified Tissue Society (ECTS) in Helsinki.

12.
Front Endocrinol (Lausanne) ; 13: 1016057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246887

RESUMO

In recent years, evidence has accumulated that the complement system, an integral part of innate immunity, may be involved in the regulation of bone homeostasis as well as inflammatory bone loss, for example, in rheumatoid arthritis and periodontitis. Complement may also contribute to osteoporosis development, but investigation of the mechanism is limited. Using mice with a conditional deletion of the complement anaphylatoxin receptor C5aR1, we here demonstrated that C5aR1 in osteoblasts (C5aR1 Runx2-Cre mice) or osteoclasts (C5aR1 LysM-Cre mice) did not affect physiological bone turnover or age-related bone loss in either sex, as confirmed by micro-computed tomography, histomorphometry, and biomechanical analyses of the bone and by the measurement of bone turnover markers in the blood serum. When female mice were subjected to ovariectomy (OVX), a common model for postmenopausal osteoporosis, significant bone loss was induced in C5aR1 fl/fl and C5aR1 LysM-Cre mice, as demonstrated by a significantly reduced bone volume fraction, trabecular number and thickness as well as an increased trabecular separation in the trabecular bone compartment. Confirming this, the osteoclast number and the receptor activator of nuclear factor k-B (RANK) ligand (RANKL) serum level were significantly elevated in these mouse lines. By contrast, C5aR1 Runx2-Cre mice were protected from bone loss after OVX and the serum RANKL concentration was not increased after OVX. These data suggested that bone cell-specific C5aR1 may be redundant in bone homeostasis regulation under physiological conditions. However, C5aR1 on osteoblasts was crucial for the induction of bone resorption under osteoporotic conditions by stimulating RANKL release, whereas C5aR1 on osteoclasts did not regulate OVX-induced bone loss. Therefore, our results implicate C5aR1 on osteoblasts as a potential target for treating postmenopausal osteoporosis.


Assuntos
Osteoporose Pós-Menopausa , Osteoporose , Animais , Feminino , Camundongos , Anafilatoxinas , Subunidade alfa 1 de Fator de Ligação ao Core , Ligantes , Osteoblastos , Osteogênese , Osteoporose/genética , Osteoporose Pós-Menopausa/genética , Receptor da Anafilatoxina C5a/genética , Receptores de Complemento , Microtomografia por Raio-X
13.
Front Endocrinol (Lausanne) ; 13: 997745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187089

RESUMO

Catecholamine signaling is known to influence bone tissue as reuptake of norepinephrine released from sympathetic nerves into bone cells declines with age leading to osteoporosis. Further, ß-adrenoceptor-blockers like propranolol provoke osteoprotective effects in osteoporotic patients. However, besides systemic adrenal and sympathetic catecholamine production, it is also known that myeloid cells can synthesize catecholamines, especially under inflammatory conditions. To investigate the effects of catecholamines produced by CD11b+ myeloid cells on bone turnover and regeneration, a mouse line with specific knockout of tyrosine hydroxylase, the rate-limiting enzyme of catecholamine synthesis, in CD11b+ myeloid cells (THflox/flox/CD11b-Cre+, referred to as THCD11b-Cre) was generated. For bone phenotyping, male mice were sacrificed at eight and twelve weeks of age and harvested bones were subjected to bone length measurement, micro-computed tomography, fluorescence-activated cell sorting of the bone marrow, gene expression analysis, histology and immunohistochemistry. Support for an age-dependent influence of myeloid cell-derived catecholamines on bone homeostasis is provided by the fact that twelve-week-old, but not eight-week-old THCD11b-Cre mice, developed an osteopenic phenotype and showed increased numbers of neutrophils and T lymphocytes in the bone marrow, while CCL2, IL-6, IL-4 and IL-10 mRNA expression was reduced in sorted myeloid bone marrow cells. To investigate the influence of myeloid cell-derived catecholamines on fracture healing, mice received a diaphyseal femur osteotomy. Three days post-fracture, immunohistochemistry revealed an increased number of macrophages, neutrophils and cytotoxic T lymphocytes in the fracture hematoma of THCD11b-Cre mice. Micro-computed tomography on day 21 showed a decreased tissue mineral density, a reduced bone volume and less trabeculae in the fracture callus indicating delayed fracture healing, probably due to the increased presence of inflammatory cells in THCD11b-Cre mice. This indicates a crucial role of myeloid cell-derived catecholamines in immune cell-bone cell crosstalk and during fracture healing.


Assuntos
Catecolaminas , Fraturas Ósseas , Animais , Remodelação Óssea , Calo Ósseo/metabolismo , Calo Ósseo/patologia , Catecolaminas/metabolismo , Fraturas Ósseas/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Interleucina-6 , Macrófagos , Masculino , Camundongos , Norepinefrina , Propranolol , RNA Mensageiro/metabolismo , Receptores Adrenérgicos/metabolismo , Tirosina 3-Mono-Oxigenase , Microtomografia por Raio-X
14.
Front Immunol ; 13: 895888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131923

RESUMO

Background: Cardiac injuries following trauma are associated with a worse clinical outcome. So-called trauma-induced secondary cardiac injuries have been recently described after experimental long bone fracture even in absence of direct heart damage. With the progressive aging of our society, the number of elderly trauma victims rises and therefore the incidence of hip fractures increases. Hip fractures were previously shown to be associated with adverse cardiac events in elderly individuals, which have mainly been attributed to pre-conditioned cardiac diseases. The aim of the present study was to investigate the effect of hip fractures on the heart in healthy young and middle-aged mice. Materials and Methods: Young (12-week-old) and middle-aged (52-week-old) female C57BL/6 mice either received an intramedullary stabilized proximal femur fracture or sham treatment. The observation time points included 6 and 24 h. Systemic levels of pro-inflammatory mediators as well as local inflammation and alterations in myocardial structure, metabolism and calcium homeostasis in left ventricular tissue was analyzed following hip fracture by multiplex analysis, RT-qPCR and immunohistochemistry. Results: After hip fracture young and middle-aged mice showed increased systemic IL-6 and KC levels, which were significantly elevated in the middle-aged animals. Furthermore, the middle-aged mice showed enhanced myocardial expression of HMGB1, TLR2/4, TNF, IL1ß and NLRP3 as well as considerable alterations in the myocardial expression of glucose- and fatty acid transporters (HFABP, GLUT4), calcium homeostasis proteins (SERCA) and cardiac structure proteins (desmin, troponin I) compared to the young animals following hip fracture. Conclusion: Young and middle-aged mice showed local myocardial alterations, which might predispose for the development of secondary cardiac injury following hip fracture. Age and the age-associated phenomenon of 'inflammaging' seemed to be an independent risk factor aggravating and accelerating cardiac alterations following hip fracture.


Assuntos
Proteína HMGB1 , Fraturas do Quadril , Animais , Cálcio , Desmina , Ácidos Graxos , Feminino , Glucose , Fraturas do Quadril/etiologia , Mediadores da Inflamação , Interleucina-6 , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fatores de Risco , Receptor 2 Toll-Like , Troponina I
15.
Elife ; 112022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35748539

RESUMO

Successful regeneration requires the coordinated execution of multiple cellular responses to injury. In amputated zebrafish fins, mature osteoblasts dedifferentiate, migrate towards the injury, and form proliferative osteogenic blastema cells. We show that osteoblast migration is preceded by cell elongation and alignment along the proximodistal axis, which require actomyosin, but not microtubule (MT) turnover. Surprisingly, osteoblast dedifferentiation and migration can be uncoupled. Using pharmacological and genetic interventions, we found that NF-ĸB and retinoic acid signalling regulate dedifferentiation without affecting migration, while the complement system and actomyosin dynamics affect migration but not dedifferentiation. Furthermore, by removing bone at two locations within a fin ray, we established an injury model containing two injury sites. We found that osteoblasts dedifferentiate at and migrate towards both sites, while accumulation of osteogenic progenitor cells and regenerative bone formation only occur at the distal-facing injury. Together, these data indicate that osteoblast dedifferentiation and migration represent generic injury responses that are differentially regulated and can occur independently of each other and of regenerative growth. We conclude that successful fin bone regeneration appears to involve the coordinated execution of generic and regeneration-specific responses of osteoblasts to injury.


Assuntos
Actomiosina , Peixe-Zebra , Nadadeiras de Animais/fisiologia , Animais , Osteoblastos , Osteogênese , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
17.
Front Immunol ; 13: 883707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558068

RESUMO

There is evidence that mast cells contribute to inflammation induced by hemorrhagic shock, severe tissue injury or sepsis. Mast cells are highly responsive to alarm signals generated after trauma, and release many inflammatory mediators including interleukin-6, a key mediator of posttraumatic inflammation. An overwhelming posttraumatic inflammation causes compromised bone healing; however, the underlying cellular and molecular mechanisms are poorly understood. Recently, we found that mast cells trigger local and systemic inflammation after isolated fracture leading to uneventful bone repair. Here, we investigated whether mast cells critically contribute to trauma-induced compromised bone healing. Male Mcpt5-Cre+ R-DTA mice, which lack connective tissue type mast cells, and their mast cell-competent Cre- littermates underwent a femur fracture with/without thoracic trauma. Posttraumatic systemic and local inflammation and bone repair were assessed 3 h and 21 d post injury. Both, the systemic and pulmonary inflammation was significantly increased in mast cell-competent mice upon combined trauma compared to isolated fracture. In mast cell-deficient mice, the increase of inflammatory mediators in the circulation induced by the severe trauma was abolished. In the bronchoalveolar lavage fluid, the trauma-induced increase of inflammatory cytokines was not reduced, but the neutrophil invasion into the lungs was significantly diminished in the absence of mast cells. Locally in the fracture hematoma, mast cell-competent mice displayed reduced inflammatory mediator concentrations after combined trauma compared to isolated fracture, which was abolished in mast cell-deficient mice. Notably, while combined trauma resulted in compromised bone repair in mast cell-competent mice, indicated by significantly reduced bone and increased cartilage fracture callus contents, this was abolished in Mcpt5-Cre+ R-DTA mice. Therefore, mast cells contribute to trauma-induced compromised bone repair and could be a potential target for new treatment options to improve fracture healing in multiply injured patients.


Assuntos
Fraturas do Fêmur , Mastócitos , Animais , Calo Ósseo , Fraturas do Fêmur/terapia , Humanos , Inflamação , Mediadores da Inflamação , Masculino , Camundongos
18.
Dis Model Mech ; 15(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35394023

RESUMO

Osteoporosis is a systemic metabolic skeletal disease characterized by low bone mass and strength associated with fragility fractures. Oxidative stress, which results from elevated intracellular reactive oxygen species (ROS) and arises in the aging organism, is considered one of the critical factors contributing to osteoporosis. Mitochondrial (mt)ROS, as the superoxide anion (O2-) generated during mitochondrial respiration, are eliminated in the young organism by antioxidant defense mechanisms, including superoxide dismutase 2 (SOD2), the expression and activity of which are decreased in aging mesenchymal progenitor cells, accompanied by increased mtROS production. Using a mouse model of osteoblast lineage cells with Sod2 deficiency, we observed significant bone loss in trabecular and cortical bones accompanied by decreased osteoblast activity, increased adipocyte accumulation in the bone marrow and augmented osteoclast activity, suggestive of altered mesenchymal progenitor cell differentiation and osteoclastogenesis. Furthermore, osteoblast senescence was increased. To date, there are only a few studies suggesting a causal association between mtROS and cellular senescence in tissue in vivo. Targeting SOD2 to improve redox homeostasis could represent a potential therapeutic strategy for maintaining bone health during aging.


Assuntos
Osteoblastos , Osteoporose , Superóxido Dismutase , Animais , Camundongos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
19.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35270044

RESUMO

While estrogen receptor alpha (ERα) is known to be important for bone development and homeostasis, its exact function during osteoblast differentiation remains unclear. Conditional deletion of ERα during specific stages of osteoblast differentiation revealed different bone phenotypes, which were also shown to be sex-dependent. Since hypertrophic chondrocytes can transdifferentiate into osteoblasts and substantially contribute to long-bone development, we aimed to investigate the effects of ERα deletion in both osteoblast and chondrocytes on bone development and structure. Therefore, we generated mice in which the ERα gene was inactivated via a Runx2-driven cyclic recombinase (ERαfl/fl; Runx2Cre). We analyzed the bones of 3-month-old ERαfl/fl; Runx2Cre mice by biomechanical testing, micro-computed tomography, and cellular parameters by histology. Male ERαfl/fl; Runx2Cre mice displayed a significantly increased cortical bone mass and flexural rigidity of the femurs compared to age-matched controls with no active Cre-transgene (ERαfl/fl). By contrast, female ERαfl/fl; Runx2Cre mice exhibited significant trabecular bone loss, whereas in cortical bone periosteal and endosteal diameters were reduced. Our results indicate that the ERα in osteoblast progenitors and hypertrophic chondrocytes differentially contributes to bone mass regulation in male and female mice and improves our understanding of ERα signaling in bone cells in vivo.


Assuntos
Condrócitos , Receptor alfa de Estrogênio , Animais , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Osteoblastos , Células-Tronco , Microtomografia por Raio-X
20.
Blood Adv ; 6(10): 3155-3161, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35134123

RESUMO

G6b-B is a megakaryocyte lineage-specific immunoreceptor tyrosine-based inhibition motif-containing receptor, essential for platelet homeostasis. Mice with a genomic deletion of the entire Mpig6b locus develop severe macrothrombocytopenia and myelofibrosis, which is reflected in humans with null mutations in MPIG6B. The current model proposes that megakaryocytes lacking G6b-B develop normally, whereas proplatelet release is hampered, but the underlying molecular mechanism remains unclear. We report on a spontaneous recessive single nucleotide mutation in C57BL/6 mice, localized within the intronic region of the Mpig6b locus that abolishes G6b-B expression and reproduces macrothrombocytopenia, myelofibrosis, and osteosclerosis. As the mutation is based on a single-nucleotide exchange, Mpig6bmut mice represent an ideal model to study the role of G6b-B. Megakaryocytes from these mice were smaller, displayed a less-developed demarcation membrane system, and had a reduced expression of receptors. RNA sequencing revealed a striking global reduction in the level of megakaryocyte-specific transcripts, in conjunction with decreased protein levels of the transcription factor GATA-1 and impaired thrombopoietin signaling. The reduced number of mature MKs in the bone marrow was corroborated on a newly developed Mpig6b-null mouse strain. Our findings highlight an unexpected essential role of G6b-B in the early differentiation within the megakaryocytic lineage.


Assuntos
Mielofibrose Primária , Trombocitopenia , Animais , Plaquetas/metabolismo , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nucleotídeos/metabolismo , Mielofibrose Primária/genética , Trombocitopenia/genética , Trombocitopenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...